Acute treatment with TNF-α attenuates insulin-stimulated protein synthesis in cultures of C2C12 myotubes through a MEK1-sensitive mechanism

Research output: Contribution to journalArticle

34 Citations (Scopus)

Abstract

Insulin and TNF-α exert opposing effects on skeletal muscle protein synthesis that are mediated in part by the rapamycin-sensitive mammalian target of rapamycin (mTOR) pathway and the PD-98059-sensitive, extracellular signal-regulated kinase (ERK) 1/2 pathway. The present study examined the separate and combined effects of insulin (INS), TNF, PD-98059, or dnMEK1 adenovirus on the translational control of protein synthesis in C2C12 myotubes. Cultures were treated with INS, TNF, PD-98059, dnMEK1, or a combination of INS + TNF with PD-98059 or dnMEK1. INS stimulated protein synthesis, enhanced eIF4E·eIF4G association, and eIF4G phosphorylation and repressed eIF4E·4E-BP1 association vs. control. INS also promoted phosphorylation of ERK1/2, S6K1, and 4E-BP1 and dephosphorylation of eIF4E. TNF alone did not have an effect on protein synthesis (vs. control), eIF4E·eIF4G association, or the phosphorylation of eIF4G, S6K1, or 4E-BP1, although it transiently increased ERK1/2 and eIF4E phosphorylation. When myotubes were treated with TNF + INS, the cytokine blocked the insulin-induced stimulation of protein synthesis. This appeared to be due to an attenuation of insulin-stimulated eIF4E·eIF4G association, because other stimulatory effects of INS, e.g., phosphorylation of ERK1/2, 4E-BP1, S6K1, eIF4G, and eIF4E and eIF4E·4E-BP1 association, were unaffected. Finally, treatment of myotubes with PD-98059 or dnMEK1 adenovirus before TNF + INS addition resulted in a derepression of protein synthesis and the association of eIF4G with eIF4E. These findings suggest that TNF abrogates insulin-induced stimulation of protein synthesis in myotubes through a decrease in eIF4F complex assembly independently of S6K1 and 4E-BP1 signaling and dependently on a MEK1-sensitive signaling pathway.

Original languageEnglish (US)
JournalAmerican Journal of Physiology - Endocrinology and Metabolism
Volume289
Issue number1 52-1
DOIs
StatePublished - Jul 1 2005

Fingerprint

Skeletal Muscle Fibers
Insulin
Proteins
Phosphorylation
Sirolimus
Adenoviridae
Mitogen-Activated Protein Kinase 3
Muscle Proteins
Mitogen-Activated Protein Kinase 1
Skeletal Muscle
2-(2-amino-3-methoxyphenyl)-4H-1-benzopyran-4-one
Cytokines

All Science Journal Classification (ASJC) codes

  • Endocrinology, Diabetes and Metabolism
  • Physiology
  • Physiology (medical)

Cite this

@article{953484a0e0ac42509070e05774491f42,
title = "Acute treatment with TNF-α attenuates insulin-stimulated protein synthesis in cultures of C2C12 myotubes through a MEK1-sensitive mechanism",
abstract = "Insulin and TNF-α exert opposing effects on skeletal muscle protein synthesis that are mediated in part by the rapamycin-sensitive mammalian target of rapamycin (mTOR) pathway and the PD-98059-sensitive, extracellular signal-regulated kinase (ERK) 1/2 pathway. The present study examined the separate and combined effects of insulin (INS), TNF, PD-98059, or dnMEK1 adenovirus on the translational control of protein synthesis in C2C12 myotubes. Cultures were treated with INS, TNF, PD-98059, dnMEK1, or a combination of INS + TNF with PD-98059 or dnMEK1. INS stimulated protein synthesis, enhanced eIF4E·eIF4G association, and eIF4G phosphorylation and repressed eIF4E·4E-BP1 association vs. control. INS also promoted phosphorylation of ERK1/2, S6K1, and 4E-BP1 and dephosphorylation of eIF4E. TNF alone did not have an effect on protein synthesis (vs. control), eIF4E·eIF4G association, or the phosphorylation of eIF4G, S6K1, or 4E-BP1, although it transiently increased ERK1/2 and eIF4E phosphorylation. When myotubes were treated with TNF + INS, the cytokine blocked the insulin-induced stimulation of protein synthesis. This appeared to be due to an attenuation of insulin-stimulated eIF4E·eIF4G association, because other stimulatory effects of INS, e.g., phosphorylation of ERK1/2, 4E-BP1, S6K1, eIF4G, and eIF4E and eIF4E·4E-BP1 association, were unaffected. Finally, treatment of myotubes with PD-98059 or dnMEK1 adenovirus before TNF + INS addition resulted in a derepression of protein synthesis and the association of eIF4G with eIF4E. These findings suggest that TNF abrogates insulin-induced stimulation of protein synthesis in myotubes through a decrease in eIF4F complex assembly independently of S6K1 and 4E-BP1 signaling and dependently on a MEK1-sensitive signaling pathway.",
author = "{Williamson, IV}, {David L.} and Scot Kimball and Jefferson, {Leonard {"}Jim{"}}",
year = "2005",
month = "7",
day = "1",
doi = "10.1152/ajpendo.00397.2004",
language = "English (US)",
volume = "289",
journal = "American Journal of Physiology",
issn = "0193-1849",
publisher = "American Physiological Society",
number = "1 52-1",

}

TY - JOUR

T1 - Acute treatment with TNF-α attenuates insulin-stimulated protein synthesis in cultures of C2C12 myotubes through a MEK1-sensitive mechanism

AU - Williamson, IV, David L.

AU - Kimball, Scot

AU - Jefferson, Leonard "Jim"

PY - 2005/7/1

Y1 - 2005/7/1

N2 - Insulin and TNF-α exert opposing effects on skeletal muscle protein synthesis that are mediated in part by the rapamycin-sensitive mammalian target of rapamycin (mTOR) pathway and the PD-98059-sensitive, extracellular signal-regulated kinase (ERK) 1/2 pathway. The present study examined the separate and combined effects of insulin (INS), TNF, PD-98059, or dnMEK1 adenovirus on the translational control of protein synthesis in C2C12 myotubes. Cultures were treated with INS, TNF, PD-98059, dnMEK1, or a combination of INS + TNF with PD-98059 or dnMEK1. INS stimulated protein synthesis, enhanced eIF4E·eIF4G association, and eIF4G phosphorylation and repressed eIF4E·4E-BP1 association vs. control. INS also promoted phosphorylation of ERK1/2, S6K1, and 4E-BP1 and dephosphorylation of eIF4E. TNF alone did not have an effect on protein synthesis (vs. control), eIF4E·eIF4G association, or the phosphorylation of eIF4G, S6K1, or 4E-BP1, although it transiently increased ERK1/2 and eIF4E phosphorylation. When myotubes were treated with TNF + INS, the cytokine blocked the insulin-induced stimulation of protein synthesis. This appeared to be due to an attenuation of insulin-stimulated eIF4E·eIF4G association, because other stimulatory effects of INS, e.g., phosphorylation of ERK1/2, 4E-BP1, S6K1, eIF4G, and eIF4E and eIF4E·4E-BP1 association, were unaffected. Finally, treatment of myotubes with PD-98059 or dnMEK1 adenovirus before TNF + INS addition resulted in a derepression of protein synthesis and the association of eIF4G with eIF4E. These findings suggest that TNF abrogates insulin-induced stimulation of protein synthesis in myotubes through a decrease in eIF4F complex assembly independently of S6K1 and 4E-BP1 signaling and dependently on a MEK1-sensitive signaling pathway.

AB - Insulin and TNF-α exert opposing effects on skeletal muscle protein synthesis that are mediated in part by the rapamycin-sensitive mammalian target of rapamycin (mTOR) pathway and the PD-98059-sensitive, extracellular signal-regulated kinase (ERK) 1/2 pathway. The present study examined the separate and combined effects of insulin (INS), TNF, PD-98059, or dnMEK1 adenovirus on the translational control of protein synthesis in C2C12 myotubes. Cultures were treated with INS, TNF, PD-98059, dnMEK1, or a combination of INS + TNF with PD-98059 or dnMEK1. INS stimulated protein synthesis, enhanced eIF4E·eIF4G association, and eIF4G phosphorylation and repressed eIF4E·4E-BP1 association vs. control. INS also promoted phosphorylation of ERK1/2, S6K1, and 4E-BP1 and dephosphorylation of eIF4E. TNF alone did not have an effect on protein synthesis (vs. control), eIF4E·eIF4G association, or the phosphorylation of eIF4G, S6K1, or 4E-BP1, although it transiently increased ERK1/2 and eIF4E phosphorylation. When myotubes were treated with TNF + INS, the cytokine blocked the insulin-induced stimulation of protein synthesis. This appeared to be due to an attenuation of insulin-stimulated eIF4E·eIF4G association, because other stimulatory effects of INS, e.g., phosphorylation of ERK1/2, 4E-BP1, S6K1, eIF4G, and eIF4E and eIF4E·4E-BP1 association, were unaffected. Finally, treatment of myotubes with PD-98059 or dnMEK1 adenovirus before TNF + INS addition resulted in a derepression of protein synthesis and the association of eIF4G with eIF4E. These findings suggest that TNF abrogates insulin-induced stimulation of protein synthesis in myotubes through a decrease in eIF4F complex assembly independently of S6K1 and 4E-BP1 signaling and dependently on a MEK1-sensitive signaling pathway.

UR - http://www.scopus.com/inward/record.url?scp=21044440466&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=21044440466&partnerID=8YFLogxK

U2 - 10.1152/ajpendo.00397.2004

DO - 10.1152/ajpendo.00397.2004

M3 - Article

C2 - 15701678

AN - SCOPUS:21044440466

VL - 289

JO - American Journal of Physiology

JF - American Journal of Physiology

SN - 0193-1849

IS - 1 52-1

ER -