TY - JOUR
T1 - Adaptive and acclimative responses of cyanobacteria to far-red light
AU - Gan, Fei
AU - Bryant, Donald A.
N1 - Funding Information:
This work was supported by National Science Foundation grant MCB-1021725 to D. A. B. The authors declare no conflicts of interest concerning the studies summarized here.
Publisher Copyright:
© 2015 Society for Applied Microbiology and John Wiley & Sons Ltd
PY - 2015/10/1
Y1 - 2015/10/1
N2 - Cyanobacteria use three major photosynthetic complexes, photosystem (PS) I, PS II and phycobilisomes, to harvest and convert sunlight into chemical energy. Until recently, it was generally thought that cyanobacteria only used light between 400 nm and 700 nm to perform photosynthesis. However, the discovery of chlorophyll (Chl) d in Acaryochloris marina and Chl f in Halomicronema hongdechloris showed that some cyanobacteria could utilize far-red light. The synthesis of Chl f (and Chl d) is part of an extensive acclimation process, far-red light photoacclimation (FaRLiP), which occurs in many cyanobacteria. Organisms performing FaRLiP contain a conserved set of 17 genes encoding paralogous subunits of the three major photosynthetic complexes. Far-red light photoacclimation leads to substantial remodelling of the photosynthetic apparatus and other changes in cellular metabolism through extensive changes in transcription. Far-red light photoacclimation appears to be controlled by a red/far-red photoreceptor, RfpA, as well as two response regulators (RfpB and RfpC), one of which is a DNA-binding protein. The remodelled photosynthetic complexes, including novel phycobiliproteins, absorb light above 700 nm and enable cells to grow in far-red light. A much simpler acclimation response, low-light photoacclimation (LoLiP), occurs in some cyanobacteria that contain the apcD4-apcB3-isiX cluster, which allows cells to grow under low light conditions.
AB - Cyanobacteria use three major photosynthetic complexes, photosystem (PS) I, PS II and phycobilisomes, to harvest and convert sunlight into chemical energy. Until recently, it was generally thought that cyanobacteria only used light between 400 nm and 700 nm to perform photosynthesis. However, the discovery of chlorophyll (Chl) d in Acaryochloris marina and Chl f in Halomicronema hongdechloris showed that some cyanobacteria could utilize far-red light. The synthesis of Chl f (and Chl d) is part of an extensive acclimation process, far-red light photoacclimation (FaRLiP), which occurs in many cyanobacteria. Organisms performing FaRLiP contain a conserved set of 17 genes encoding paralogous subunits of the three major photosynthetic complexes. Far-red light photoacclimation leads to substantial remodelling of the photosynthetic apparatus and other changes in cellular metabolism through extensive changes in transcription. Far-red light photoacclimation appears to be controlled by a red/far-red photoreceptor, RfpA, as well as two response regulators (RfpB and RfpC), one of which is a DNA-binding protein. The remodelled photosynthetic complexes, including novel phycobiliproteins, absorb light above 700 nm and enable cells to grow in far-red light. A much simpler acclimation response, low-light photoacclimation (LoLiP), occurs in some cyanobacteria that contain the apcD4-apcB3-isiX cluster, which allows cells to grow under low light conditions.
UR - http://www.scopus.com/inward/record.url?scp=84949792707&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84949792707&partnerID=8YFLogxK
U2 - 10.1111/1462-2920.12992
DO - 10.1111/1462-2920.12992
M3 - Review article
C2 - 26234306
AN - SCOPUS:84949792707
VL - 17
SP - 3450
EP - 3465
JO - Environmental Microbiology
JF - Environmental Microbiology
SN - 1462-2912
IS - 10
ER -