Adaptive trajectory control for autonomous helicopters

Eric N. Johnson, Suresh K. Kannan

Research output: Contribution to journalArticlepeer-review

316 Scopus citations

Abstract

For autonomous helicopter flight, it is common to separate the flight control problem into an inner loop that controls attitude and an outer loop that controls the translational trajectory of the helicopter. In previous work, dynamic inversion and neural-network-based adaptation was used to increase performance of the attitude control system and the method of pseudocontrol hedging (PCH) was used to protect the adaptation process from actuator limits and dynamics. Adaptation to uncertainty in the attitude, as well as the translational dynamics, is introduced, thus, minimizing the effects of model error in all six degrees of freedom and leading to more accurate position tracking. The PCH method is used in a novel way that enables adaptation to occur in the outer loop without interacting with the attitude dynamics. A pole-placement approach is used that alleviates timescale separation requirements, allowing the outer-loop bandwidth to be closer to that of the inner loop, thus, increasing position tracking performance. A poor model of the attitude dynamics and a basic kinematics model is shown to be sufficient for accurate position tracking. The theory and implementation of such an approach, with a summary of flight-test results, are described.

Original languageEnglish (US)
Pages (from-to)524-538
Number of pages15
JournalJournal of Guidance, Control, and Dynamics
Volume28
Issue number3
DOIs
StatePublished - 2005

All Science Journal Classification (ASJC) codes

  • Control and Systems Engineering
  • Aerospace Engineering
  • Space and Planetary Science
  • Electrical and Electronic Engineering
  • Applied Mathematics

Fingerprint Dive into the research topics of 'Adaptive trajectory control for autonomous helicopters'. Together they form a unique fingerprint.

Cite this