### Abstract

The first goal of this article is to explicitly describe how to translate adjoint invariants K[G_{r}]^{G} of the Frobenius kernel G_{r} of the general linear group G=GL(m) to elements of the center of the distribution algebra of G_{r}. The second goal is to provide a characterization of K[G_{r}]^{G} and to find algebra generators of K[G_{1}]^{G} in the case when G=GL(2).

Original language | English (US) |
---|---|

Pages (from-to) | 5317-5337 |

Number of pages | 21 |

Journal | Communications in Algebra |

Volume | 47 |

Issue number | 12 |

DOIs | |

State | Published - Dec 2 2019 |

### Fingerprint

### All Science Journal Classification (ASJC) codes

- Algebra and Number Theory

### Cite this

}

*Communications in Algebra*, vol. 47, no. 12, pp. 5317-5337. https://doi.org/10.1080/00927872.2019.1617877

**Adjoint invariants of Frobenius kernels of GL(m) and elements of the center of Dist(GL(m)).** / Marko, Frantisek.

Research output: Contribution to journal › Article

TY - JOUR

T1 - Adjoint invariants of Frobenius kernels of GL(m) and elements of the center of Dist(GL(m))

AU - Marko, Frantisek

PY - 2019/12/2

Y1 - 2019/12/2

N2 - The first goal of this article is to explicitly describe how to translate adjoint invariants K[Gr]G of the Frobenius kernel Gr of the general linear group G=GL(m) to elements of the center of the distribution algebra of Gr. The second goal is to provide a characterization of K[Gr]G and to find algebra generators of K[G1]G in the case when G=GL(2).

AB - The first goal of this article is to explicitly describe how to translate adjoint invariants K[Gr]G of the Frobenius kernel Gr of the general linear group G=GL(m) to elements of the center of the distribution algebra of Gr. The second goal is to provide a characterization of K[Gr]G and to find algebra generators of K[G1]G in the case when G=GL(2).

UR - http://www.scopus.com/inward/record.url?scp=85066236861&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85066236861&partnerID=8YFLogxK

U2 - 10.1080/00927872.2019.1617877

DO - 10.1080/00927872.2019.1617877

M3 - Article

AN - SCOPUS:85066236861

VL - 47

SP - 5317

EP - 5337

JO - Communications in Algebra

JF - Communications in Algebra

SN - 0092-7872

IS - 12

ER -