Adsorption-controlled growth of BiFeO3 by MBE and integration with wide band gap semiconductors

J. F. Ihlefeld, W. Tian, Zi-kui Liu, W. A. Doolittle, M. Bernhagen, P. Reiche, R. Uecker, R. Ramesh, D. G. Schlom

Research output: Chapter in Book/Report/Conference proceedingConference contribution

1 Scopus citations

Abstract

BiFeO3 thin films have been deposited on (101) DyScO 3, (0001) AlGaN/GaN, and (0001) SiC single crystal substrates by reactive molecular-beam epitaxy in an adsorption-controlled growth regime. This is achieved by supplying a bismuth over-pressure and utilizing the differential vapor pressures between bismuth oxides and BiFeO3 to control stoichiometry. Four-circle x-ray diffraction reveals phase-pure, epitaxial films with rocking curve full width at half maximum values as narrow as 7.2 arc seconds (0.002°). Epitaxial growth of (0001)-oriented BiFeO3 thin films on (0001) GaN, including AlGaN HEMT structures, and (0001) SiC has been realized utilizing intervening epitaxial (111) SrTiO3 / (100) TiO2 buffer layers. The epitaxial BiFeO3 thin films have two in-plane orientations: [112̄0] BiFeO3 || [112̄0] GaN (SiC) plus a twin variant related by a 180° in-plane rotation. This epitaxial integration of the ferroelectric with the highest known polarization, BiFeO3, with wide band gap semiconductors is an important step toward novel field-effect devices.

Original languageEnglish (US)
Title of host publication17th IEEE International Symposium on the Applications of Ferroelectrics, ISAF 2008
DOIs
StatePublished - Dec 1 2008
Event17th IEEE International Symposium on the Applications of Ferroelectrics, ISAF 2008 - Santa Fe, NM, United States
Duration: Feb 23 2008Feb 28 2008

Publication series

NameIEEE International Symposium on Applications of Ferroelectrics
Volume3

Other

Other17th IEEE International Symposium on the Applications of Ferroelectrics, ISAF 2008
CountryUnited States
CitySanta Fe, NM
Period2/23/082/28/08

All Science Journal Classification (ASJC) codes

  • Electronic, Optical and Magnetic Materials
  • Electrical and Electronic Engineering

Fingerprint Dive into the research topics of 'Adsorption-controlled growth of BiFeO<sub>3</sub> by MBE and integration with wide band gap semiconductors'. Together they form a unique fingerprint.

Cite this