TY - JOUR
T1 - Air turbulence characteristics at multiple sites in and above the Amazon rainforest canopy
AU - Santana, Raoni A.
AU - Dias-Júnior, Cléo Q.
AU - da Silva, Júlio Tóta
AU - Fuentes, Jose D.
AU - do Vale, Roseilson Souza
AU - Alves, Eliane Gomes
AU - dos Santos, Rosa Maria N.
AU - Manzi, Antônio O.
N1 - Funding Information:
The first author thanks CAPES for the PhD grant awarded through the Programa de Pós-graduação em Clima e Ambiente and the Universidade Federal do Oeste do Pará (UFOPA) for the partial release (20 h a week), which allowed for the accomplishment of this work. The authors would like to thank all the development and teaching and research institutions that provided financial and human resources to obtain the data of this study, namely: Fundação de Amparo à Pesquisa do Estado do Amazonas (FAPEAM) , Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) , Universidade do Estado do Amazonas (UEA) , Instituto Nacional de Pesquisas da Amazônia (INPA) and Programa de Grande Escala da Biosfera-Atmosfera na Amazônia (LBA) . The authors sincerely thank Dr. Marcelo Chameki and his team for the efforts in obtaining the excellent data collected in the K34 during GoAmazon and making this data available for this work. JDF acknowledges the U.S. Department of Energy for the funding to complete the field studies as part of the GoAmazon project (grant SC0011075 ).
Funding Information:
The first author thanks CAPES for the PhD grant awarded through the Programa de Pós-graduação em Clima e Ambiente and the Universidade Federal do Oeste do Pará (UFOPA) for the partial release (20 h a week), which allowed for the accomplishment of this work. The authors would like to thank all the development and teaching and research institutions that provided financial and human resources to obtain the data of this study, namely: Fundação de Amparo à Pesquisa do Estado do Amazonas (FAPEAM), Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP), Universidade do Estado do Amazonas (UEA), Instituto Nacional de Pesquisas da Amazônia (INPA) and Programa de Grande Escala da Biosfera-Atmosfera na Amazônia (LBA). The authors sincerely thank Dr. Marcelo Chameki and his team for the efforts in obtaining the excellent data collected in the K34 during GoAmazon and making this data available for this work. JDF acknowledges the U.S. Department of Energy for the funding to complete the field studies as part of the GoAmazon project (grant SC0011075).
Publisher Copyright:
© 2018 Elsevier B.V.
PY - 2018/10/15
Y1 - 2018/10/15
N2 - Atmospheric turbulence characteristics within and above rain forest canopies are investigated at several sites located in the Amazon region of Brazil. Turbulence data provided by bi- and three-dimensional sonic anemometers, which were deployed at heights ranging from near the forest floor to about 80 m, are analyzed to describe the principal features of atmospheric turbulence, sensible heat flux (H), and components of the turbulent kinetic energy (TKE) budget equation. The analyses focused on weak (WW) and strong (SW) wind conditions to achieve the research objectives of evaluating the turbulence structure above and below the rain forest canopy and estimating the degree of coupling between air layers above the forest and deep in the canopy. Turbulence statistical moments show that atmospheric eddies, generated above the canopy, hardly penetrate the region below 0.5h (h is the canopy height). Forest-atmosphere exchanges of heat differ depending on the observed wind regimes. Sensible heat fluxes decrease with canopy depth for SW conditions and are approximately constant with the height for WW above the canopy. Sensible heat flux profiles reveal a transition layer (around 0.6h) which sometimes exchanges heat with the upper and sometimes with the lower forest canopy, depending on time of day and weather conditions. TKE balance results show that during the daytime period in SW conditions the shear production is at least an order of magnitude greater than the buoyancy above the forest canopy. This turbulence, however, is practically all dissipated in the region above 0.5h. Thus, the air layer from the soil surface to 0.5h is largely decoupled from the upper part of the forest canopy. This feature of having the bottom of the canopy mostly decoupled from the air aloft in the dense and tall rain forest can exert control on the residence times and turbulent transport of plant-emitted gases out of the forest canopy.
AB - Atmospheric turbulence characteristics within and above rain forest canopies are investigated at several sites located in the Amazon region of Brazil. Turbulence data provided by bi- and three-dimensional sonic anemometers, which were deployed at heights ranging from near the forest floor to about 80 m, are analyzed to describe the principal features of atmospheric turbulence, sensible heat flux (H), and components of the turbulent kinetic energy (TKE) budget equation. The analyses focused on weak (WW) and strong (SW) wind conditions to achieve the research objectives of evaluating the turbulence structure above and below the rain forest canopy and estimating the degree of coupling between air layers above the forest and deep in the canopy. Turbulence statistical moments show that atmospheric eddies, generated above the canopy, hardly penetrate the region below 0.5h (h is the canopy height). Forest-atmosphere exchanges of heat differ depending on the observed wind regimes. Sensible heat fluxes decrease with canopy depth for SW conditions and are approximately constant with the height for WW above the canopy. Sensible heat flux profiles reveal a transition layer (around 0.6h) which sometimes exchanges heat with the upper and sometimes with the lower forest canopy, depending on time of day and weather conditions. TKE balance results show that during the daytime period in SW conditions the shear production is at least an order of magnitude greater than the buoyancy above the forest canopy. This turbulence, however, is practically all dissipated in the region above 0.5h. Thus, the air layer from the soil surface to 0.5h is largely decoupled from the upper part of the forest canopy. This feature of having the bottom of the canopy mostly decoupled from the air aloft in the dense and tall rain forest can exert control on the residence times and turbulent transport of plant-emitted gases out of the forest canopy.
UR - http://www.scopus.com/inward/record.url?scp=85048705403&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85048705403&partnerID=8YFLogxK
U2 - 10.1016/j.agrformet.2018.05.027
DO - 10.1016/j.agrformet.2018.05.027
M3 - Article
AN - SCOPUS:85048705403
SN - 0168-1923
VL - 260-261
SP - 41
EP - 54
JO - Agricultural and Forest Meteorology
JF - Agricultural and Forest Meteorology
ER -