All the Wiser: Fake News Intervention Using User Reading Preferences

Kuan Chieh Lo, Shih Chieh Dai, Aiping Xiong, Jing Jiang, Lun Wei Ku

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

To address the increasingly significant issue of fake news, we develop a news reading platform in which we propose an implicit approach to reduce people's belief in fake news. Specifically, we leverage reinforcement learning to learn an intervention module on top of a recommender system (RS) such that the module is activated to replace RS to recommend news toward the verification once users touch the fake news. To examine the effect of the proposed method, we conduct a comprehensive evaluation with 89 human subjects and check the effective rate of change in belief but without their other limitations. Moreover, 84% participants indicate the proposed platform can help them defeat fake news. The demo video is available on YouTube https://youtu.be/wKI6nuXu-SM.

Original languageEnglish (US)
Title of host publicationWSDM 2021 - Proceedings of the 14th ACM International Conference on Web Search and Data Mining
PublisherAssociation for Computing Machinery, Inc
Pages1069-1072
Number of pages4
ISBN (Electronic)9781450382977
DOIs
StatePublished - Aug 3 2021
Event14th ACM International Conference on Web Search and Data Mining, WSDM 2021 - Virtual, Online, Israel
Duration: Mar 8 2021Mar 12 2021

Publication series

NameWSDM 2021 - Proceedings of the 14th ACM International Conference on Web Search and Data Mining

Conference

Conference14th ACM International Conference on Web Search and Data Mining, WSDM 2021
CountryIsrael
CityVirtual, Online
Period3/8/213/12/21

All Science Journal Classification (ASJC) codes

  • Computer Networks and Communications
  • Computer Science Applications
  • Software

Fingerprint Dive into the research topics of 'All the Wiser: Fake News Intervention Using User Reading Preferences'. Together they form a unique fingerprint.

Cite this