alpha-Stimulation protects exercise increment in skeletal muscle oxygen consumption.

S. H. Nellis, S. F. Flaim, K. M. McCauley, Robert Zelis

Research output: Contribution to journalArticle

12 Citations (Scopus)

Abstract

Oxygen consumption (VO2) in an isolated, autoperfused, statically exercising canine gracilis muscle (2.5% P0) was studied in low blood flow (Q) states induced by constant norepinephrine (NE) infusion and by mechanical occlusion (MO). Q and VO2 were evaluated at rest (Qc and VO2c), after 5 min of exercise (Qe and VO2e) and after 5 more min of exercise with either NE or MO (Qt and VO2t). Data were normalized and plotted as the VO2e-VO2t)/(VO2c-VO2e) vs. (Qe-Qt)/(Qc-Qe) and equations of the lines for NE (y = 0.090x + 0.048) and for MO (y = 0.488x + 0.070) were determined. The slopes of the lines, tested by analysis of covariance, were significantly different (P less than 0.005). These data indicate that when NE reduced Q during exercise, the exercise induced in VO2 was protected to a greater degree than when MO reduced Q under similar conditions. To determine if the effect of NE on VO2 was secondary to a beta-adrenergic-receptor-mediated of skeletal muscle metabolic processes, the experiments were repeated in the presence of beta-blockade with propranolol. In the presence of beta-blockade, the effects of NE on skeletal muscle VO2 were unchanged. It is therefore hypothesized that the mechanism of this effect of NE may be an increase in the efficiency of oxygen extraction resulting from a redistribution of blood flow to more active muscle fiber regions.

Original languageEnglish (US)
JournalThe American journal of physiology
Volume238
Issue number3
StatePublished - Mar 1 1980

Fingerprint

Oxygen Consumption
Norepinephrine
Skeletal Muscle
Receptors, Adrenergic, beta
Propranolol
Canidae
Oxygen
Muscles

All Science Journal Classification (ASJC) codes

  • Medicine(all)

Cite this

@article{807116e520a6415f98844025aa2e6f0b,
title = "alpha-Stimulation protects exercise increment in skeletal muscle oxygen consumption.",
abstract = "Oxygen consumption (VO2) in an isolated, autoperfused, statically exercising canine gracilis muscle (2.5{\%} P0) was studied in low blood flow (Q) states induced by constant norepinephrine (NE) infusion and by mechanical occlusion (MO). Q and VO2 were evaluated at rest (Qc and VO2c), after 5 min of exercise (Qe and VO2e) and after 5 more min of exercise with either NE or MO (Qt and VO2t). Data were normalized and plotted as the VO2e-VO2t)/(VO2c-VO2e) vs. (Qe-Qt)/(Qc-Qe) and equations of the lines for NE (y = 0.090x + 0.048) and for MO (y = 0.488x + 0.070) were determined. The slopes of the lines, tested by analysis of covariance, were significantly different (P less than 0.005). These data indicate that when NE reduced Q during exercise, the exercise induced in VO2 was protected to a greater degree than when MO reduced Q under similar conditions. To determine if the effect of NE on VO2 was secondary to a beta-adrenergic-receptor-mediated of skeletal muscle metabolic processes, the experiments were repeated in the presence of beta-blockade with propranolol. In the presence of beta-blockade, the effects of NE on skeletal muscle VO2 were unchanged. It is therefore hypothesized that the mechanism of this effect of NE may be an increase in the efficiency of oxygen extraction resulting from a redistribution of blood flow to more active muscle fiber regions.",
author = "Nellis, {S. H.} and Flaim, {S. F.} and McCauley, {K. M.} and Robert Zelis",
year = "1980",
month = "3",
day = "1",
language = "English (US)",
volume = "238",
journal = "American Journal of Physiology",
issn = "0002-9513",
publisher = "American Physiological Society",
number = "3",

}

alpha-Stimulation protects exercise increment in skeletal muscle oxygen consumption. / Nellis, S. H.; Flaim, S. F.; McCauley, K. M.; Zelis, Robert.

In: The American journal of physiology, Vol. 238, No. 3, 01.03.1980.

Research output: Contribution to journalArticle

TY - JOUR

T1 - alpha-Stimulation protects exercise increment in skeletal muscle oxygen consumption.

AU - Nellis, S. H.

AU - Flaim, S. F.

AU - McCauley, K. M.

AU - Zelis, Robert

PY - 1980/3/1

Y1 - 1980/3/1

N2 - Oxygen consumption (VO2) in an isolated, autoperfused, statically exercising canine gracilis muscle (2.5% P0) was studied in low blood flow (Q) states induced by constant norepinephrine (NE) infusion and by mechanical occlusion (MO). Q and VO2 were evaluated at rest (Qc and VO2c), after 5 min of exercise (Qe and VO2e) and after 5 more min of exercise with either NE or MO (Qt and VO2t). Data were normalized and plotted as the VO2e-VO2t)/(VO2c-VO2e) vs. (Qe-Qt)/(Qc-Qe) and equations of the lines for NE (y = 0.090x + 0.048) and for MO (y = 0.488x + 0.070) were determined. The slopes of the lines, tested by analysis of covariance, were significantly different (P less than 0.005). These data indicate that when NE reduced Q during exercise, the exercise induced in VO2 was protected to a greater degree than when MO reduced Q under similar conditions. To determine if the effect of NE on VO2 was secondary to a beta-adrenergic-receptor-mediated of skeletal muscle metabolic processes, the experiments were repeated in the presence of beta-blockade with propranolol. In the presence of beta-blockade, the effects of NE on skeletal muscle VO2 were unchanged. It is therefore hypothesized that the mechanism of this effect of NE may be an increase in the efficiency of oxygen extraction resulting from a redistribution of blood flow to more active muscle fiber regions.

AB - Oxygen consumption (VO2) in an isolated, autoperfused, statically exercising canine gracilis muscle (2.5% P0) was studied in low blood flow (Q) states induced by constant norepinephrine (NE) infusion and by mechanical occlusion (MO). Q and VO2 were evaluated at rest (Qc and VO2c), after 5 min of exercise (Qe and VO2e) and after 5 more min of exercise with either NE or MO (Qt and VO2t). Data were normalized and plotted as the VO2e-VO2t)/(VO2c-VO2e) vs. (Qe-Qt)/(Qc-Qe) and equations of the lines for NE (y = 0.090x + 0.048) and for MO (y = 0.488x + 0.070) were determined. The slopes of the lines, tested by analysis of covariance, were significantly different (P less than 0.005). These data indicate that when NE reduced Q during exercise, the exercise induced in VO2 was protected to a greater degree than when MO reduced Q under similar conditions. To determine if the effect of NE on VO2 was secondary to a beta-adrenergic-receptor-mediated of skeletal muscle metabolic processes, the experiments were repeated in the presence of beta-blockade with propranolol. In the presence of beta-blockade, the effects of NE on skeletal muscle VO2 were unchanged. It is therefore hypothesized that the mechanism of this effect of NE may be an increase in the efficiency of oxygen extraction resulting from a redistribution of blood flow to more active muscle fiber regions.

UR - http://www.scopus.com/inward/record.url?scp=0018991255&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0018991255&partnerID=8YFLogxK

M3 - Article

C2 - 7369377

AN - SCOPUS:0018991255

VL - 238

JO - American Journal of Physiology

JF - American Journal of Physiology

SN - 0002-9513

IS - 3

ER -