Ambiguity and Doppler tolerance analyses of frequency-stepped, Sudoku-variant waveforms

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

One obtains a frequency-hopping waveform from a traditional 9 × 9 Sudoku by zeroing out all entries besides a fixed integer and using the non-zero integer positions as the frequency-hopping permutation. Using a new and general approach to describing Doppler tolerance of Setlur et al., we previously computed the narrowband ambiguity function to formally compare Doppler tolerances of Sudoku-based frequency-hopping waveforms with Doppler tolerances of waveforms made from Costas arrays and from random permutations. The analyses in this paper will expand our previous analyses to pulse trains, to Sudokus having additional constraints (Hyper Sudoku and X-Sudoku) in support of more waveform structure, and to larger Sudoku (Superdoku) in support of higher time-bandwidth products. The ambiguity analyses investigate the peak sidelobe levels found from using various permutations as well as the sidelobe levels around the central peak of the ambiguity function.

Original languageEnglish (US)
Title of host publicationRadar Sensor Technology XXV
EditorsKenneth I. Ranney, Ann M. Raynal
PublisherSPIE
ISBN (Electronic)9781510643215
DOIs
StatePublished - 2021
EventRadar Sensor Technology XXV 2021 - Virtual, Online, United States
Duration: Apr 12 2021Apr 16 2021

Publication series

NameProceedings of SPIE - The International Society for Optical Engineering
Volume11742
ISSN (Print)0277-786X
ISSN (Electronic)1996-756X

Conference

ConferenceRadar Sensor Technology XXV 2021
Country/TerritoryUnited States
CityVirtual, Online
Period4/12/214/16/21

All Science Journal Classification (ASJC) codes

  • Electronic, Optical and Magnetic Materials
  • Condensed Matter Physics
  • Computer Science Applications
  • Applied Mathematics
  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'Ambiguity and Doppler tolerance analyses of frequency-stepped, Sudoku-variant waveforms'. Together they form a unique fingerprint.

Cite this