Amphoteric ion exchange membrane synthesized by direct polymerization for vanadium redox flow battery application

Yufei Wang, Shuanjin Wang, Min Xiao, Shuqin Song, Dongmei Han, Michael Anthony Hickner, Yuezhong Meng

Research output: Contribution to journalArticle

36 Scopus citations

Abstract

Novel sulfonated poly (fluorenyl ether ketone) with pendant quaternary ammonium groups (SPFEKA) was successfully synthesized by one-pot copolymerization of bis(4-fluoro-3-sulfophenyl)sulfone disodium salt, 4,4′-difluorobenzophenone, bisphenol fluorene and 2,2′-dimethylaminemethylene-9,9′-bis(4-hydroxyphenyl) fluorene (DABPF). The chemical structures were confirmed by FT-IR, and 1H NMR. The thermal properties were fully investigated by TGA. The synthesized copolymers SPFEKAs are soluble in aprotic solvents, and can be cast into membranes on a glass plate from their N,N′-dimethylacetamide (DMAc) solution. A new kind of amphoteric ion exchange membrane (AIEM) was obtained by immersed SPFEKA into 1 M sulfuric acid. The proton conductivities of these membranes are comparable to the most reported sulfonated polymers under the same conditions. The permeability of vanadium ions in vanadium redox flow battery (VRB) was effectively suppressed by introducing quaternary ammonium groups for Donnan exclusion effect. AIEM-20% possess a only 4.4% vanadium ion permeability of Nafion 115. Cell performance tests showed that the VRB assembled with AIEM-20% shows the highest coulombic efficiency (CE) at the current density of 50 mA/cm2, because of its lowest VO2+ permeability. In conclusion, these ionomers could be promising candidates for ion-exchange membranes for VRB applications.

Original languageEnglish (US)
Pages (from-to)16123-16131
Number of pages9
JournalInternational Journal of Hydrogen Energy
Volume39
Issue number28
DOIs
StatePublished - Jan 1 2014

All Science Journal Classification (ASJC) codes

  • Renewable Energy, Sustainability and the Environment
  • Fuel Technology
  • Condensed Matter Physics
  • Energy Engineering and Power Technology

Fingerprint Dive into the research topics of 'Amphoteric ion exchange membrane synthesized by direct polymerization for vanadium redox flow battery application'. Together they form a unique fingerprint.

  • Cite this