An adaptive meshfree method for phase-field models of biomembranes. Part I: Approximation with maximum-entropy basis functions

A. Rosolen, C. Peco, M. Arroyo

Research output: Contribution to journalArticle

34 Scopus citations

Abstract

We present an adaptive meshfree method to approximate phase-field models of biomembranes. In such models, the Helfrich curvature elastic energy, the surface area, and the enclosed volume of a vesicle are written as functionals of a continuous phase-field, which describes the interface in a smeared manner. Such functionals involve up to second-order spatial derivatives of the phase-field, leading to fourth-order Euler-Lagrange partial differential equations (PDE). The solutions develop sharp internal layers in the vicinity of the putative interface, and are nearly constant elsewhere. Thanks to the smoothness of the local maximum-entropy (max-ent) meshfree basis functions, we approximate numerically this high-order phase-field model with a direct Ritz-Galerkin method. The flexibility of the meshfree method allows us to easily adapt the grid to resolve the sharp features of the solutions. Thus, the proposed approach is more efficient than common tensor product methods (e.g. finite differences or spectral methods), and simpler than unstructured C0 finite element methods, applicable by reformulating the model as a system of second-order PDE. The proposed method, implemented here under the assumption of axisymmetry, allows us to show numerical evidence of convergence of the phase-field solutions to the sharp interface limit as the regularization parameter approaches zero. In a companion paper, we present a Lagrangian method based on the approximants analyzed here to study the dynamics of vesicles embedded in a viscous fluid.

Original languageEnglish (US)
Pages (from-to)303-319
Number of pages17
JournalJournal of Computational Physics
Volume249
DOIs
StatePublished - Sep 15 2013

All Science Journal Classification (ASJC) codes

  • Numerical Analysis
  • Modeling and Simulation
  • Physics and Astronomy (miscellaneous)
  • Physics and Astronomy(all)
  • Computer Science Applications
  • Computational Mathematics
  • Applied Mathematics

Fingerprint Dive into the research topics of 'An adaptive meshfree method for phase-field models of biomembranes. Part I: Approximation with maximum-entropy basis functions'. Together they form a unique fingerprint.

  • Cite this