An ADMM algorithm for clustering partially observed networks

N. S. Aybat, S. Zarmehri, S. Kumara

Research output: Chapter in Book/Report/Conference proceedingConference contribution

3 Scopus citations

Abstract

Community detection has attracted increasing attention during the past decade, and many algorithms have been proposed to find the underlying community structure in a given network. Many of these algorithms are based on modularity maximization, and these methods suffer from the resolution limit. In order to detect the underlying cluster structure, we propose a new convex formulation to decompose a partially observed adjacency matrix of a network into low-rank and sparse components. In such decomposition, the low-rank component encodes the cluster structure under certain assumptions. We also devise an alternating direction method of multipliers with increasing penalty sequence to solve this problem; and compare it with Louvain method, which maximizes the modularity, on some synthetic randomly generated networks. Numerical results show that our method outperforms Louvain method on the randomly generated networks when variance among cluster sizes increases. Moreover, empirical results also demonstrate that our formulation is indeed tighter than the robust PCA formulation, and is able to find the true clustering when the robust PCA formulation fails.

Original languageEnglish (US)
Title of host publicationSIAM International Conference on Data Mining 2015, SDM 2015
EditorsSuresh Venkatasubramanian, Jieping Ye
PublisherSociety for Industrial and Applied Mathematics Publications
Pages460-468
Number of pages9
ISBN (Electronic)9781510811522
DOIs
StatePublished - 2015
EventSIAM International Conference on Data Mining 2015, SDM 2015 - Vancouver, Canada
Duration: Apr 30 2015May 2 2015

Publication series

NameSIAM International Conference on Data Mining 2015, SDM 2015

Other

OtherSIAM International Conference on Data Mining 2015, SDM 2015
Country/TerritoryCanada
CityVancouver
Period4/30/155/2/15

All Science Journal Classification (ASJC) codes

  • Computational Theory and Mathematics
  • Computer Vision and Pattern Recognition
  • Software

Fingerprint

Dive into the research topics of 'An ADMM algorithm for clustering partially observed networks'. Together they form a unique fingerprint.

Cite this