An analysis of fast photochemistry over high northern latitudes during spring and summer using in-situ observations from ARCTAS and TOPSE

J. R. Olson, J. H. Crawford, W. Brune, J. Mao, X. Ren, A. Fried, B. Anderson, E. Apel, M. Beaver, D. Blake, G. Chen, J. Crounse, J. Dibb, G. Diskin, S. R. Hall, L. G. Huey, D. Knapp, D. Richter, D. Riemer, J. St. ClairK. Ullmann, J. Walega, P. Weibring, A. Weinheimer, P. Wennberg, A. Wisthaler

Research output: Contribution to journalArticle

18 Citations (Scopus)

Abstract

Observations of chemical constituents and meteorological quantities obtained during the two Arctic phases of the airborne campaign ARCTAS (Arctic Research of the Composition of the Troposphere from Aircraft and Satellites) are analyzed using an observationally constrained steady state box model. Measurements of OH and HO 2 from the Penn State ATHOS instrument are compared to model predictions. Forty percent of OH measurements below 2 km are at the limit of detection during the spring phase (ARCTAS-A). While the median observed-to-calculated ratio is near one, both the scatter of observations and the model uncertainty for OH are at the magnitude of ambient values. During the summer phase (ARCTAS-B), model predictions of OH are biased low relative to observations and demonstrate a high sensitivity to the level of uncertainty in NO observations. Predictions of HO 2 using observed CH 2O and H 2O 2 as model constraints are up to a factor of two larger than observed. A temperature-dependent terminal loss rate of HO 2 to aerosol recently proposed in the literature is shown to be insufficient to reconcile these differences. A comparison of ARCTAS-A to the high latitude springtime portion of the 2000 TOPSE campaign (Tropospheric Ozone Production about the Spring Equinox) shows similar meteorological and chemical environments with the exception of peroxides; observations of H 2O 2 during ARCTAS-A were 2.5 to 3 times larger than those during TOPSE. The cause of this difference in peroxides remains unresolved and has important implications for the Arctic HO x budget. Unconstrained model predictions for both phases indicate photochemistry alone is unable to simultaneously sustain observed levels of CH 2O and H 2O 2; however when the model is constrained with observed CH 2O, H 2O 2 predictions from a range of rainout parameterizations bracket its observations. A mechanism suitable to explain observed concentrations of CH 2O is uncertain. Free tropospheric observations of acetaldehyde (CH 3CHO) are 2-3 times larger than its predictions, though constraint of the model to those observations is sufficient to account for less than half of the deficit in predicted CH 2O. The box model calculates gross O 3 formation during spring to maximize from 1-4 km at 0.8 ppbv d -1, in agreement with estimates from TOPSE, and a gross production of 2-4 ppbv d -1 in the boundary layer and upper troposphere during summer. Use of the lower observed levels of HO 2 in place of model predictions decreases the gross production by 25-50%. Net O 3 production is near zero throughout the ARCTAS-A troposphere, and is 1-2 ppbv in the boundary layer and upper altitudes during ARCTAS-B.

Original languageEnglish (US)
Pages (from-to)6799-6825
Number of pages27
JournalAtmospheric Chemistry and Physics
Volume12
Issue number15
DOIs
StatePublished - Nov 19 2012

Fingerprint

photochemistry
troposphere
aircraft
summer
prediction
boundary layer
analysis
in situ
acetaldehyde
parameterization
aerosol

All Science Journal Classification (ASJC) codes

  • Atmospheric Science

Cite this

Olson, J. R. ; Crawford, J. H. ; Brune, W. ; Mao, J. ; Ren, X. ; Fried, A. ; Anderson, B. ; Apel, E. ; Beaver, M. ; Blake, D. ; Chen, G. ; Crounse, J. ; Dibb, J. ; Diskin, G. ; Hall, S. R. ; Huey, L. G. ; Knapp, D. ; Richter, D. ; Riemer, D. ; St. Clair, J. ; Ullmann, K. ; Walega, J. ; Weibring, P. ; Weinheimer, A. ; Wennberg, P. ; Wisthaler, A. / An analysis of fast photochemistry over high northern latitudes during spring and summer using in-situ observations from ARCTAS and TOPSE. In: Atmospheric Chemistry and Physics. 2012 ; Vol. 12, No. 15. pp. 6799-6825.
@article{8013781ffbb348fc9f1ab61c477e49e0,
title = "An analysis of fast photochemistry over high northern latitudes during spring and summer using in-situ observations from ARCTAS and TOPSE",
abstract = "Observations of chemical constituents and meteorological quantities obtained during the two Arctic phases of the airborne campaign ARCTAS (Arctic Research of the Composition of the Troposphere from Aircraft and Satellites) are analyzed using an observationally constrained steady state box model. Measurements of OH and HO 2 from the Penn State ATHOS instrument are compared to model predictions. Forty percent of OH measurements below 2 km are at the limit of detection during the spring phase (ARCTAS-A). While the median observed-to-calculated ratio is near one, both the scatter of observations and the model uncertainty for OH are at the magnitude of ambient values. During the summer phase (ARCTAS-B), model predictions of OH are biased low relative to observations and demonstrate a high sensitivity to the level of uncertainty in NO observations. Predictions of HO 2 using observed CH 2O and H 2O 2 as model constraints are up to a factor of two larger than observed. A temperature-dependent terminal loss rate of HO 2 to aerosol recently proposed in the literature is shown to be insufficient to reconcile these differences. A comparison of ARCTAS-A to the high latitude springtime portion of the 2000 TOPSE campaign (Tropospheric Ozone Production about the Spring Equinox) shows similar meteorological and chemical environments with the exception of peroxides; observations of H 2O 2 during ARCTAS-A were 2.5 to 3 times larger than those during TOPSE. The cause of this difference in peroxides remains unresolved and has important implications for the Arctic HO x budget. Unconstrained model predictions for both phases indicate photochemistry alone is unable to simultaneously sustain observed levels of CH 2O and H 2O 2; however when the model is constrained with observed CH 2O, H 2O 2 predictions from a range of rainout parameterizations bracket its observations. A mechanism suitable to explain observed concentrations of CH 2O is uncertain. Free tropospheric observations of acetaldehyde (CH 3CHO) are 2-3 times larger than its predictions, though constraint of the model to those observations is sufficient to account for less than half of the deficit in predicted CH 2O. The box model calculates gross O 3 formation during spring to maximize from 1-4 km at 0.8 ppbv d -1, in agreement with estimates from TOPSE, and a gross production of 2-4 ppbv d -1 in the boundary layer and upper troposphere during summer. Use of the lower observed levels of HO 2 in place of model predictions decreases the gross production by 25-50{\%}. Net O 3 production is near zero throughout the ARCTAS-A troposphere, and is 1-2 ppbv in the boundary layer and upper altitudes during ARCTAS-B.",
author = "Olson, {J. R.} and Crawford, {J. H.} and W. Brune and J. Mao and X. Ren and A. Fried and B. Anderson and E. Apel and M. Beaver and D. Blake and G. Chen and J. Crounse and J. Dibb and G. Diskin and Hall, {S. R.} and Huey, {L. G.} and D. Knapp and D. Richter and D. Riemer and {St. Clair}, J. and K. Ullmann and J. Walega and P. Weibring and A. Weinheimer and P. Wennberg and A. Wisthaler",
year = "2012",
month = "11",
day = "19",
doi = "10.5194/acp-12-6799-2012",
language = "English (US)",
volume = "12",
pages = "6799--6825",
journal = "Atmospheric Chemistry and Physics",
issn = "1680-7316",
publisher = "European Geosciences Union",
number = "15",

}

Olson, JR, Crawford, JH, Brune, W, Mao, J, Ren, X, Fried, A, Anderson, B, Apel, E, Beaver, M, Blake, D, Chen, G, Crounse, J, Dibb, J, Diskin, G, Hall, SR, Huey, LG, Knapp, D, Richter, D, Riemer, D, St. Clair, J, Ullmann, K, Walega, J, Weibring, P, Weinheimer, A, Wennberg, P & Wisthaler, A 2012, 'An analysis of fast photochemistry over high northern latitudes during spring and summer using in-situ observations from ARCTAS and TOPSE', Atmospheric Chemistry and Physics, vol. 12, no. 15, pp. 6799-6825. https://doi.org/10.5194/acp-12-6799-2012

An analysis of fast photochemistry over high northern latitudes during spring and summer using in-situ observations from ARCTAS and TOPSE. / Olson, J. R.; Crawford, J. H.; Brune, W.; Mao, J.; Ren, X.; Fried, A.; Anderson, B.; Apel, E.; Beaver, M.; Blake, D.; Chen, G.; Crounse, J.; Dibb, J.; Diskin, G.; Hall, S. R.; Huey, L. G.; Knapp, D.; Richter, D.; Riemer, D.; St. Clair, J.; Ullmann, K.; Walega, J.; Weibring, P.; Weinheimer, A.; Wennberg, P.; Wisthaler, A.

In: Atmospheric Chemistry and Physics, Vol. 12, No. 15, 19.11.2012, p. 6799-6825.

Research output: Contribution to journalArticle

TY - JOUR

T1 - An analysis of fast photochemistry over high northern latitudes during spring and summer using in-situ observations from ARCTAS and TOPSE

AU - Olson, J. R.

AU - Crawford, J. H.

AU - Brune, W.

AU - Mao, J.

AU - Ren, X.

AU - Fried, A.

AU - Anderson, B.

AU - Apel, E.

AU - Beaver, M.

AU - Blake, D.

AU - Chen, G.

AU - Crounse, J.

AU - Dibb, J.

AU - Diskin, G.

AU - Hall, S. R.

AU - Huey, L. G.

AU - Knapp, D.

AU - Richter, D.

AU - Riemer, D.

AU - St. Clair, J.

AU - Ullmann, K.

AU - Walega, J.

AU - Weibring, P.

AU - Weinheimer, A.

AU - Wennberg, P.

AU - Wisthaler, A.

PY - 2012/11/19

Y1 - 2012/11/19

N2 - Observations of chemical constituents and meteorological quantities obtained during the two Arctic phases of the airborne campaign ARCTAS (Arctic Research of the Composition of the Troposphere from Aircraft and Satellites) are analyzed using an observationally constrained steady state box model. Measurements of OH and HO 2 from the Penn State ATHOS instrument are compared to model predictions. Forty percent of OH measurements below 2 km are at the limit of detection during the spring phase (ARCTAS-A). While the median observed-to-calculated ratio is near one, both the scatter of observations and the model uncertainty for OH are at the magnitude of ambient values. During the summer phase (ARCTAS-B), model predictions of OH are biased low relative to observations and demonstrate a high sensitivity to the level of uncertainty in NO observations. Predictions of HO 2 using observed CH 2O and H 2O 2 as model constraints are up to a factor of two larger than observed. A temperature-dependent terminal loss rate of HO 2 to aerosol recently proposed in the literature is shown to be insufficient to reconcile these differences. A comparison of ARCTAS-A to the high latitude springtime portion of the 2000 TOPSE campaign (Tropospheric Ozone Production about the Spring Equinox) shows similar meteorological and chemical environments with the exception of peroxides; observations of H 2O 2 during ARCTAS-A were 2.5 to 3 times larger than those during TOPSE. The cause of this difference in peroxides remains unresolved and has important implications for the Arctic HO x budget. Unconstrained model predictions for both phases indicate photochemistry alone is unable to simultaneously sustain observed levels of CH 2O and H 2O 2; however when the model is constrained with observed CH 2O, H 2O 2 predictions from a range of rainout parameterizations bracket its observations. A mechanism suitable to explain observed concentrations of CH 2O is uncertain. Free tropospheric observations of acetaldehyde (CH 3CHO) are 2-3 times larger than its predictions, though constraint of the model to those observations is sufficient to account for less than half of the deficit in predicted CH 2O. The box model calculates gross O 3 formation during spring to maximize from 1-4 km at 0.8 ppbv d -1, in agreement with estimates from TOPSE, and a gross production of 2-4 ppbv d -1 in the boundary layer and upper troposphere during summer. Use of the lower observed levels of HO 2 in place of model predictions decreases the gross production by 25-50%. Net O 3 production is near zero throughout the ARCTAS-A troposphere, and is 1-2 ppbv in the boundary layer and upper altitudes during ARCTAS-B.

AB - Observations of chemical constituents and meteorological quantities obtained during the two Arctic phases of the airborne campaign ARCTAS (Arctic Research of the Composition of the Troposphere from Aircraft and Satellites) are analyzed using an observationally constrained steady state box model. Measurements of OH and HO 2 from the Penn State ATHOS instrument are compared to model predictions. Forty percent of OH measurements below 2 km are at the limit of detection during the spring phase (ARCTAS-A). While the median observed-to-calculated ratio is near one, both the scatter of observations and the model uncertainty for OH are at the magnitude of ambient values. During the summer phase (ARCTAS-B), model predictions of OH are biased low relative to observations and demonstrate a high sensitivity to the level of uncertainty in NO observations. Predictions of HO 2 using observed CH 2O and H 2O 2 as model constraints are up to a factor of two larger than observed. A temperature-dependent terminal loss rate of HO 2 to aerosol recently proposed in the literature is shown to be insufficient to reconcile these differences. A comparison of ARCTAS-A to the high latitude springtime portion of the 2000 TOPSE campaign (Tropospheric Ozone Production about the Spring Equinox) shows similar meteorological and chemical environments with the exception of peroxides; observations of H 2O 2 during ARCTAS-A were 2.5 to 3 times larger than those during TOPSE. The cause of this difference in peroxides remains unresolved and has important implications for the Arctic HO x budget. Unconstrained model predictions for both phases indicate photochemistry alone is unable to simultaneously sustain observed levels of CH 2O and H 2O 2; however when the model is constrained with observed CH 2O, H 2O 2 predictions from a range of rainout parameterizations bracket its observations. A mechanism suitable to explain observed concentrations of CH 2O is uncertain. Free tropospheric observations of acetaldehyde (CH 3CHO) are 2-3 times larger than its predictions, though constraint of the model to those observations is sufficient to account for less than half of the deficit in predicted CH 2O. The box model calculates gross O 3 formation during spring to maximize from 1-4 km at 0.8 ppbv d -1, in agreement with estimates from TOPSE, and a gross production of 2-4 ppbv d -1 in the boundary layer and upper troposphere during summer. Use of the lower observed levels of HO 2 in place of model predictions decreases the gross production by 25-50%. Net O 3 production is near zero throughout the ARCTAS-A troposphere, and is 1-2 ppbv in the boundary layer and upper altitudes during ARCTAS-B.

UR - http://www.scopus.com/inward/record.url?scp=84867567331&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84867567331&partnerID=8YFLogxK

U2 - 10.5194/acp-12-6799-2012

DO - 10.5194/acp-12-6799-2012

M3 - Article

AN - SCOPUS:84867567331

VL - 12

SP - 6799

EP - 6825

JO - Atmospheric Chemistry and Physics

JF - Atmospheric Chemistry and Physics

SN - 1680-7316

IS - 15

ER -