An empirical study linking additive manufacturing design process to success in manufacturability

Priyesh Mehta, Catherine G.P. Berdanier, Manoj Malviya, Colin Miller, Guhaprasanna Manogharan

Research output: Contribution to conferencePaperpeer-review

Abstract

This paper characterizes engineering designers’ abilities to re-design a component for additive manufacturing, employing screen capture methods. Additive Manufacturing has garnered significant interest from a wide range of industries, academia and government stakeholders due to its potential to reform and disrupt traditional manufacturing processes. The technology offers unprecedented design freedom and customization along with its ability to process novel and high strength alloys in promising lead times. To harness the maximum potential of this technology, designers are often tasked with creating new products or re-design existing portfolios of traditionally manufactured parts to achieve lightweight designs with better performance. To date, few studies explore the correspondence between design behaviors and manufacturability of final product within an Additive Manufacturing context. This paper presents empirical data from the design processes of six graduate student engineering designers as they re-design a traditionally designed part for additive manufacturing. Behaviors through the design task are compared between the study participants with a quantitative measure of the manufacturability and quality of each design. Results indicate opportunities for further research and best practices in design for Additive manufacturing and engineering education practitioners across multiple disciplines.

Original languageEnglish (US)
Pages66-79
Number of pages14
StatePublished - 2019
Event30th Annual International Solid Freeform Fabrication Symposium - An Additive Manufacturing Conference, SFF 2019 - Austin, United States
Duration: Aug 12 2019Aug 14 2019

Conference

Conference30th Annual International Solid Freeform Fabrication Symposium - An Additive Manufacturing Conference, SFF 2019
CountryUnited States
CityAustin
Period8/12/198/14/19

All Science Journal Classification (ASJC) codes

  • Surfaces, Coatings and Films
  • Surfaces and Interfaces

Fingerprint Dive into the research topics of 'An empirical study linking additive manufacturing design process to success in manufacturability'. Together they form a unique fingerprint.

Cite this