TY - GEN
T1 - An experimental approach in defect detection of a single row ball bearing using noise generation signal
AU - Afsharfard, Aref
AU - Reza Sanei, Seyed Hamid
N1 - Publisher Copyright:
Copyright © 2019 ASME.
PY - 2019
Y1 - 2019
N2 - Bearings are critical mechanical components that are used in rotary machinery. Timely detection of defects in such components can prevent catastrophic failure. Noise is generated during the rotation of bearings even without the presence of defects due to finite number of rotating elements to carry the load. Such noise is associated with the change in effective stiffness during rotation, however, a sharp spike is observed in the noise level with presence of local defects. This study uses the noise generation aspect of roller bearings to identify local defect in a single row ball bearing with outer race stationary under radial load. Experimental testing is conducted on two identical bearings. The defective bearing is selected from a diesel engine subjected to 20 years of service. Dissecting the defective bearing revealed pitting and spalling of the inner race and balls, the most two common bearing defects. Both time and frequency analysis of sound pressure generated by the bearings were performed. The results show that there is a clear distinction in the time and frequency spectra between healthy and defective bearings. Findings of this study revealed that using a simple cost efficient in-house experimental setup, local defects can be readily detected.
AB - Bearings are critical mechanical components that are used in rotary machinery. Timely detection of defects in such components can prevent catastrophic failure. Noise is generated during the rotation of bearings even without the presence of defects due to finite number of rotating elements to carry the load. Such noise is associated with the change in effective stiffness during rotation, however, a sharp spike is observed in the noise level with presence of local defects. This study uses the noise generation aspect of roller bearings to identify local defect in a single row ball bearing with outer race stationary under radial load. Experimental testing is conducted on two identical bearings. The defective bearing is selected from a diesel engine subjected to 20 years of service. Dissecting the defective bearing revealed pitting and spalling of the inner race and balls, the most two common bearing defects. Both time and frequency analysis of sound pressure generated by the bearings were performed. The results show that there is a clear distinction in the time and frequency spectra between healthy and defective bearings. Findings of this study revealed that using a simple cost efficient in-house experimental setup, local defects can be readily detected.
UR - http://www.scopus.com/inward/record.url?scp=85078682540&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85078682540&partnerID=8YFLogxK
U2 - 10.1115/IMECE2019-12146
DO - 10.1115/IMECE2019-12146
M3 - Conference contribution
AN - SCOPUS:85078682540
T3 - ASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE)
BT - Acoustics, Vibration, and Phononics
PB - American Society of Mechanical Engineers (ASME)
T2 - ASME 2019 International Mechanical Engineering Congress and Exposition, IMECE 2019
Y2 - 11 November 2019 through 14 November 2019
ER -