An experimental validation of heat release rate fluctuation measurements in technically premixed flames

Poravee Orawannukul, Bryan Quay, Domenic Santavicca

    Research output: Contribution to journalArticlepeer-review

    5 Scopus citations

    Abstract

    Understanding the effects of inlet velocity and inlet equivalence ratio fluctuations on heat release rate fluctuations in lean premixed gas turbine combustors is essential for predicting combustor instability characteristics. This information is typically obtained from independent velocity-forced and fuel-forced flame transfer function measurements, where the global chemiluminescence intensity is used as a measure of the flame's overall rate of heat release. Current lean premixed combustors operate in a technically premixed mode where the flame is exposed to both velocity and equivalence ratio fluctuations and, as a result, the chemiluminescence intensity does not provide an accurate measure of the flame's rate of heat release. The objective of this work is to experimentally assess the validity of a technique for measuring heat release rate fluctuations in technically premixed flames based on the linear superposition of fuel-forced and velocity-forced flame transfer function measurements. In the absence of a technique for directly measuring heat release rate fluctuations in technically premixed flames, the heat release rate reconstruction is validated indirectly by comparing measured and reconstructed chemiluminescence intensity fluctuations. The results are reported for a range of operating conditions and forcing frequencies which demonstrate the capabilities and limitations of the heat release rate reconstruction technique. A variation of this technique, referred to as a reverse reconstruction, is also proposed, which does not require a measurement of the fuel-forced flame transfer function. The results obtained using the reverse reconstruction technique are presented and compared to the results from the direct reconstruction technique.

    Original languageEnglish (US)
    Article number121505
    JournalJournal of Engineering for Gas Turbines and Power
    Volume135
    Issue number12
    DOIs
    StatePublished - Nov 28 2013

    All Science Journal Classification (ASJC) codes

    • Nuclear Energy and Engineering
    • Fuel Technology
    • Aerospace Engineering
    • Energy Engineering and Power Technology
    • Mechanical Engineering

    Fingerprint

    Dive into the research topics of 'An experimental validation of heat release rate fluctuation measurements in technically premixed flames'. Together they form a unique fingerprint.

    Cite this