An investigation of groove type casing treatment on aerodynamic performance of a linear turbine cascade

C. B. Senel, H. Maral, L. A. Kavurmacioglu, C. Camci

Research output: Chapter in Book/Report/Conference proceedingConference contribution

1 Scopus citations

Abstract

Highly three-dimensional and complex flow structure in the tip gap between a blade tip and the casing leads to significant inefficiency in the aerodynamic performance of a turbine. The interaction between the tip leakage vortex and the main passage flow is a substantial source of aerodynamic loss. The present research deals with the effect of groove type casing treatment on the aerodynamic performance of a linear turbine cascade. Grooved casings are widely used in compressors in order to improve the stall margin whereas limited studies are available on turbines. In this study, various circumferential grooves are investigated using the computational approach for a single stage axial turbine blade. The specific HP turbine airfoil under numerical investigation is identical to the rotor tip profile of the Axial Flow Turbine Research Facility (AFTRF) of the Pennsylvania State University. The carefully measured aerodynamic flow quantities in the AFTRF are used for initial computational quality assessment purposes. Numerical calculations are obtained by solving the three-dimensional, incompressible, steady and turbulent form of the Reynolds-Averaged Navier-Stokes (RANS) equations. A two-equation turbulence model, Shear Stress Transport (SST) k-ω is used in the present set of calculations. Current results indicate that groove casing treatment can be used effectively in axial turbines in order to improve the aerodynamic performance. Detailed flow visualizations within the passage and numerical calculations reveal that a measurable improvement in the aerodynamic performance is possible using the specific circumferential grooves presented in this paper.

Original languageEnglish (US)
Title of host publication12th European Conference on Turbomachinery Fluid Dynamics and Thermodynamics, ETC 2017
PublisherKTH Royal Institute of Technology
StatePublished - 2017
Event12th European Conference on Turbomachinery Fluid Dynamics and Thermodynamics, ETC 2017 - Stockholm, Sweden
Duration: Apr 3 2017Apr 7 2017

Other

Other12th European Conference on Turbomachinery Fluid Dynamics and Thermodynamics, ETC 2017
CountrySweden
CityStockholm
Period4/3/174/7/17

All Science Journal Classification (ASJC) codes

  • Mechanics of Materials
  • Mechanical Engineering
  • Condensed Matter Physics

Fingerprint Dive into the research topics of 'An investigation of groove type casing treatment on aerodynamic performance of a linear turbine cascade'. Together they form a unique fingerprint.

  • Cite this

    Senel, C. B., Maral, H., Kavurmacioglu, L. A., & Camci, C. (2017). An investigation of groove type casing treatment on aerodynamic performance of a linear turbine cascade. In 12th European Conference on Turbomachinery Fluid Dynamics and Thermodynamics, ETC 2017 KTH Royal Institute of Technology.