Analysis of gas-cycling performance in gas/condensate reservoirs using neuro-simulation

L. F. Ayala, T. Ertekin

Research output: Contribution to conferencePaper

16 Scopus citations

Abstract

The study of gas-condensate reservoirs has been a fertile area of research in the last decades, especially because of their singular depletion behavior which cast them apart from other types of oil and gas reservoirs. Typically, exploiting a gas-condensate reservoir without pressure maintenance generates high surface gas recoveries with relatively low condensate recoveries. Appearance of a hydrocarbon liquid phase upon isothermal depletion is typical of these systems, and major concerns arise related to the loss of this valuable fraction of heavier hydrocarbons and the associated impartaient in gas production around the wellbore region. As a consequence, the injection of either surface gas or other gases such as nitrogen is common for pressure maintenance purposes. Pressure maintenance is economically justified by keeping the reservoir pressure above dew point or revaporizing any valuable condensate that might have formed. The convenience of the gas injection operation for a specific gas-condensate reservoir is strongly tied to the flow characteristics of the reservoir and phase behavior of the fluid. Highly sophisticated and expensive compositional simulations are usually employed in order to calculate reservoir performance under gas-cycling operations. In this study, we propose the implementation of artificial neural network (ANN) technology towards the establishment of an expert system capable of learning the existing vaguely understood relationships between the input parameters and output response of compositional simulation of gas-cycling operations in gas-condensate reservoirs. Parametric studies are conducted which identify the most influential reservoir and fluid characteristics in the establishment of optimum production protocols for the implementation of the pressure maintenance operation. As a result, a powerful tool for the implementation of pressure maintenance operations in gas-condensate reservoirs is developed. This tool is capable of assisting in designing an optimized exploitation scheme for a particular reservoir under consideration for development. Fast, reliable, and inexpensive results are obtained using the proposed approach while capturing the important flow and thermodynamic characteristics inherent to such systems without resorting to detailed and expensive compositional simulation studies.

Original languageEnglish (US)
Pages1121-1126
Number of pages6
DOIs
StatePublished - 2005
EventSPE Annual Technical Conference and Exhibition, ATCE 2005 - Dallas, TX, United States
Duration: Oct 9 2005Oct 12 2005

Other

OtherSPE Annual Technical Conference and Exhibition, ATCE 2005
CountryUnited States
CityDallas, TX
Period10/9/0510/12/05

All Science Journal Classification (ASJC) codes

  • Fuel Technology
  • Energy Engineering and Power Technology

Fingerprint Dive into the research topics of 'Analysis of gas-cycling performance in gas/condensate reservoirs using neuro-simulation'. Together they form a unique fingerprint.

  • Cite this

    Ayala, L. F., & Ertekin, T. (2005). Analysis of gas-cycling performance in gas/condensate reservoirs using neuro-simulation. 1121-1126. Paper presented at SPE Annual Technical Conference and Exhibition, ATCE 2005, Dallas, TX, United States. https://doi.org/10.2118/95655-ms