TY - JOUR
T1 - Analysis of lexical signatures for improving information persistence on the world wide web
AU - Park, Seung Taek
AU - Pennock, David M.
AU - Giles, C. Lee
AU - Krovetz, Robert
N1 - Copyright:
Copyright 2013 Elsevier B.V., All rights reserved.
PY - 2004/10
Y1 - 2004/10
N2 - A lexical signature (LS) consisting of several key words from a Web document is often sufficient information for finding the document later, even if its URL has changed. We conduct a large-scale empirical study of nine methods for generating lexical signatures, including Phelps and Wilensky's original proposal (PW), seven of our own static variations, and one new dynamic method. We examine their performance on the Web over a 10-month period, and on a TREC data set, evaluating their ability to both (1) uniquely identify the original (possibly modified) document, and (2) locate other relevant documents if the original is lost. Lexical signatures chosen to minimize document frequency (DF) are good at unique identification but poor at finding relevant documents. PW works well on the relatively small TREC data set, but acts almost identically to DF on the Web, which contains billions of documents. Term-frequency-based lexical signatures (TF) are very easy to compute and often perform well, but are highly dependent on the ranking system of the search engine used. The term-frequency inverse-document-frequency- (TFIDF-) based method and hybrid methods (which combine DF with TF or TFIDF) seem to be the most promising candidates among static methods for generating effective lexical signatures. We propose a dynamic LS generator called Test & Select (TS) to mitigate LS conflict. TS outperforms all eight static methods in terms of both extracting the desired document and finding relevant information, over three different search engines. All LS methods show significant performance degradation as documents in the corpus are edited.
AB - A lexical signature (LS) consisting of several key words from a Web document is often sufficient information for finding the document later, even if its URL has changed. We conduct a large-scale empirical study of nine methods for generating lexical signatures, including Phelps and Wilensky's original proposal (PW), seven of our own static variations, and one new dynamic method. We examine their performance on the Web over a 10-month period, and on a TREC data set, evaluating their ability to both (1) uniquely identify the original (possibly modified) document, and (2) locate other relevant documents if the original is lost. Lexical signatures chosen to minimize document frequency (DF) are good at unique identification but poor at finding relevant documents. PW works well on the relatively small TREC data set, but acts almost identically to DF on the Web, which contains billions of documents. Term-frequency-based lexical signatures (TF) are very easy to compute and often perform well, but are highly dependent on the ranking system of the search engine used. The term-frequency inverse-document-frequency- (TFIDF-) based method and hybrid methods (which combine DF with TF or TFIDF) seem to be the most promising candidates among static methods for generating effective lexical signatures. We propose a dynamic LS generator called Test & Select (TS) to mitigate LS conflict. TS outperforms all eight static methods in terms of both extracting the desired document and finding relevant information, over three different search engines. All LS methods show significant performance degradation as documents in the corpus are edited.
UR - http://www.scopus.com/inward/record.url?scp=9144269133&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=9144269133&partnerID=8YFLogxK
U2 - 10.1145/1028099.1028101
DO - 10.1145/1028099.1028101
M3 - Review article
AN - SCOPUS:9144269133
SN - 1046-8188
VL - 22
SP - 540
EP - 572
JO - ACM Transactions on Office Information Systems
JF - ACM Transactions on Office Information Systems
IS - 4
ER -