Analysis of the Rigorous Coupled Wave Approach for p-polarized light in gratings

Benjamin J. Civiletti, Akhlesh Lakhtakia, Peter B. Monk

Research output: Contribution to journalArticlepeer-review

Abstract

We study the convergence properties of the two-dimensional Rigorous Coupled Wave Approach (RCWA) for p-polarized monochromatic incident light. The RCWA is a semi-analytical numerical method that is widely used to solve the boundary-value problem of scattering by a grating. The approach requires the expansion of all electromagnetic field phasors and the relative permittivity as Fourier series in the spatial variable along the direction of the periodicity of the grating. In the direction perpendicular to the grating periodicity, the domain is discretized into thin slices and the actual relative permittivity is replaced by an approximation. The approximate relative permittivity is chosen so that the solution of the Maxwell equations in each slice can be computed without further approximation. Thus, there is error due to the approximate relative permittivity as well as the truncation of the Fourier series. We show that the RCWA embodies a Galerkin scheme for a perturbed problem, and then we use tools from the Finite Element Method to show that the method converges with increasing number of retained Fourier modes and finer approximations of the relative permittivity. Numerical examples illustrate our analysis, and suggest further work.

Original languageEnglish (US)
Article number113235
JournalJournal of Computational and Applied Mathematics
Volume386
DOIs
StatePublished - Apr 2021

All Science Journal Classification (ASJC) codes

  • Computational Mathematics
  • Applied Mathematics

Fingerprint

Dive into the research topics of 'Analysis of the Rigorous Coupled Wave Approach for p-polarized light in gratings'. Together they form a unique fingerprint.

Cite this