Analysis of wireless optical communications feasibility in presence of clouds using Markov chains

Z. Hajjarian, M. Kavehrad, J. Fadlullah

Research output: Contribution to journalArticle

12 Scopus citations

Abstract

Free Space Optical (FSO) communications is a practical solution for creating a three dimensional global broadband communications grid, offering bandwidths far beyond possible in Radio Frequency (RF) range. However, attributes of atmospheric turbulence (scintillation) and obscurants such as clouds impose perennial limitations on availability and reliability of optical links. To design and evaluate optimum transmission techniques that operate under realistic atmospheric conditions, a good understanding of the channel behavior is necessary. In most prior works, Monte-Carlo Ray Tracing (MCRT) algorithm has been used to analyze the channel behavior. This task is quite numerically intensive. The focus of this paper is on investigating the possibility of simplifying this task by a direct extraction of state transition matrices associated with standard Markov modeling from the MCRT computer simulations programs. We show that by tracing a photon's trajectory in space via a Markov chain model, the angular distribution can be calculated by simple matrix multiplications. We also demonstrate that the new approach produces results that are close to those obtained by MCRT and other known methods. Furthermore, considering the fact that angular, spatial, and temporal distributions of energy are inter-related, mixing time of Monte-Carlo Markov Chain (MCMC) for different types of aerosols is calculated based on eigen-analysis of the state transition matrix and possibility of communications in scattering media is investigated.

Original languageEnglish (US)
Article number5342312
Pages (from-to)1526-1534
Number of pages9
JournalIEEE Journal on Selected Areas in Communications
Volume27
Issue number9
DOIs
StatePublished - Dec 1 2009

All Science Journal Classification (ASJC) codes

  • Computer Networks and Communications
  • Electrical and Electronic Engineering

Fingerprint Dive into the research topics of 'Analysis of wireless optical communications feasibility in presence of clouds using Markov chains'. Together they form a unique fingerprint.

  • Cite this