Anomalous behavior at the I2/a to Imab phase transition in SiO2-moganite: An analysis using hard-mode Raman spectroscopy

Peter J. Heaney, David A. McKeown, Jeffrey E. Post

Research output: Contribution to journalArticlepeer-review

19 Scopus citations

Abstract

The silica polymorph moganite is commonly intergrown with quartz in microcrystalline silica varieties that are less than ∼100 Ma in age. Synchrotron X-ray diffraction suggests that a displacive phase transition occurs when moganite is heated above ∼570 K, with an increase in symmetry from I2/a to Imab. In the present study, we employed hard-mode Raman spectroscopy to confirm the existence of the α-β moganite transformation and to offer complementary insight into the transition mechanism. Our analysis of the displacement of the 501 Δcm-1 symmetric stretching-bending vibration (B3g mode) with changing temperature strongly supports the existence of a monoclinic-to-orthorhombic phase transition between 570 and 590 K. Between 593 and 723 K, however, the mode remained fixed at 496 Δcm-1. This behavior was repeated on cooling, but with a hysteresis of over 100 K. We offer three hypotheses that may explain this observation: (1) the intergrowth of nanoscale quartz lamellae within moganite may exert a strain that inhibits the transition; (2) the transition may exhibit a martensitic character marked by the co-existence of α- and β-moganite over a finite temperature interval; and (3) the α- and β-moganite transition may occur via an intermediate phase.

Original languageEnglish (US)
Pages (from-to)631-639
Number of pages9
JournalAmerican Mineralogist
Volume92
Issue number4
DOIs
StatePublished - Apr 1 2007

All Science Journal Classification (ASJC) codes

  • Geophysics
  • Geochemistry and Petrology

Fingerprint Dive into the research topics of 'Anomalous behavior at the I2/a to Imab phase transition in SiO<sub>2</sub>-moganite: An analysis using hard-mode Raman spectroscopy'. Together they form a unique fingerprint.

Cite this