Ant colonies maintain social homeostasis in the face of decreased density

Andreas P. Modlmeier, Ewan Colman, Ephraim M. Hanks, Ryan Bringenberg, Shweta Bansal, David P. Hughes

Research output: Contribution to journalArticlepeer-review

7 Scopus citations

Abstract

Interactions lie at the heart of social organization, particularly in ant societies. Interaction rates are presumed to increase with density, but there is little empirical evidence for this. We manipulated density within carpenter ant colonies of the species Camponotus pennsylvanicus by quadrupling nest space and by manually tracking 6.9 million ant locations and over 3200 interactions to study the relationship between density, spatial organization and interaction rates. Colonies divided into distinct spatial regions on the basis of their underlying spatial organization and changed their movement patterns accordingly. Despite a reduction in both overall and local density, we did not find the expected concomitant reduction in interaction rates across all colonies. Instead, we found divergent effects across colonies. Our results highlight the remarkable organizational resilience of ant colonies to changes in density, which allows them to sustain two key basic colony life functions, that is food and information exchange, during environmental change.

Original languageEnglish (US)
Article numbere38473
JournaleLife
Volume8
DOIs
StatePublished - May 2019

All Science Journal Classification (ASJC) codes

  • Neuroscience(all)
  • Immunology and Microbiology(all)
  • Biochemistry, Genetics and Molecular Biology(all)

Fingerprint Dive into the research topics of 'Ant colonies maintain social homeostasis in the face of decreased density'. Together they form a unique fingerprint.

Cite this