Apoptotic death of renal tubular cells in experimental sepsis

Evangelos Messaris, Nikolaos Memos, Emmy Chatzigianni, Agapi Kataki, Marilena Nikolopoulou, Andreas Manouras, Konstadinos Albanopoulos, Manousos M. Konstadoulakis, John Bramis

Research output: Contribution to journalArticle

17 Citations (Scopus)

Abstract

Background and Purpose: Renal dysfunction attributable to sepsis was long considered a result of hemodynamic instability and subsequent local ischemia. Recent data show that apoptosis may be implicated also. The purpose of this study was to evaluate the role of apoptosis and the expression of the bax, bcl-2, caspase-8, and cytochrome c proteins in the renal parenchymal cells of rats with sepsis. Methods: Sepsis was induced using cecal ligation and puncture (CLP) in 62 male Wistar rats, which were euthanized 6, 12, 24, 36, 48, or 60 h later. Ten sham-treated animals served as a control group. Another group of 50 animals were subjected to CLP and then supervised for 60 h. Renal apoptosis was evaluated using light and transmission electron microscopy, in situ nick-end labeling (TUNEL), and flow cytometry using 7-amino-actinomycin D (7-AAD). Caspase-mediated apoptosis was assessed using M30 antibody. The expression of the apoptosis-regulator proteins B-cell lymphoma 2 (bcl-2), bcl-2-associated x protein (bax), caspase-8, and cytochrome c was detected immunohistochemically. Results: Sepsis increased inflammatory infiltration (p < 0.001) and necrosis (p < 0.001) in renal parenchyma. Apoptosis was significantly more common than in the kidneys of control animals (p = 0.02). Nuclei stained by the TUNEL technique were predominant in the tubular cells of non-survivors (p = 0.05). The time distribution of all types of cell death was increased significantly 6 h after the induction of sepsis, and declined subsequently. Caspase-generated cytokeratin 18 (CK18) new epitope (M30) was significantly more abundant in the kidneys of animals with sepsis than in control rats, with peaks at 6 h and 60 h post-procedure (p < 0.001). In addition, cells initiating apoptosis were significantly more common at 6 h than at 48 h post-CLP (p = 0.014). Caspase-8 protein immunodetection followed the same time pattern as cell death, increasing as early as 6 h post-CLP and decreasing thereafter (p = 0.013). Bax protein expression was elevated significantly early in the course of sepsis (p = 0.037), whereas the other members of the mitochondrial-dependent pathway remained constant. Animals dying from sepsis had a significantly greater prevalence of bax- (p = 0.037) and caspase-8- (p = 0.031) immunoreactive renal cells. Conclusion: Apoptosis in renal tissue was significantly more common in animals with sepsis than in controls. The time distribution of cell death markers showed a consistent pattern, making early sepsis the likely initiator of the apoptotic events.

Original languageEnglish (US)
Pages (from-to)377-388
Number of pages12
JournalSurgical Infections
Volume9
Issue number3
DOIs
StatePublished - Jun 1 2008

Fingerprint

Sepsis
Kidney
Apoptosis
Caspase 8
Punctures
Ligation
In Situ Nick-End Labeling
B-Cell Lymphoma
Cell Death
Caspases
Cytochromes c
Proteins
Keratin-18
bcl-2-Associated X Protein
Transmission Electron Microscopy
Wistar Rats
Epitopes
Flow Cytometry
Necrosis
Ischemia

All Science Journal Classification (ASJC) codes

  • Surgery
  • Microbiology (medical)
  • Infectious Diseases

Cite this

Messaris, E., Memos, N., Chatzigianni, E., Kataki, A., Nikolopoulou, M., Manouras, A., ... Bramis, J. (2008). Apoptotic death of renal tubular cells in experimental sepsis. Surgical Infections, 9(3), 377-388. https://doi.org/10.1089/sur.2006.018
Messaris, Evangelos ; Memos, Nikolaos ; Chatzigianni, Emmy ; Kataki, Agapi ; Nikolopoulou, Marilena ; Manouras, Andreas ; Albanopoulos, Konstadinos ; Konstadoulakis, Manousos M. ; Bramis, John. / Apoptotic death of renal tubular cells in experimental sepsis. In: Surgical Infections. 2008 ; Vol. 9, No. 3. pp. 377-388.
@article{27e2aa005605413a87ec1b0512f40f2f,
title = "Apoptotic death of renal tubular cells in experimental sepsis",
abstract = "Background and Purpose: Renal dysfunction attributable to sepsis was long considered a result of hemodynamic instability and subsequent local ischemia. Recent data show that apoptosis may be implicated also. The purpose of this study was to evaluate the role of apoptosis and the expression of the bax, bcl-2, caspase-8, and cytochrome c proteins in the renal parenchymal cells of rats with sepsis. Methods: Sepsis was induced using cecal ligation and puncture (CLP) in 62 male Wistar rats, which were euthanized 6, 12, 24, 36, 48, or 60 h later. Ten sham-treated animals served as a control group. Another group of 50 animals were subjected to CLP and then supervised for 60 h. Renal apoptosis was evaluated using light and transmission electron microscopy, in situ nick-end labeling (TUNEL), and flow cytometry using 7-amino-actinomycin D (7-AAD). Caspase-mediated apoptosis was assessed using M30 antibody. The expression of the apoptosis-regulator proteins B-cell lymphoma 2 (bcl-2), bcl-2-associated x protein (bax), caspase-8, and cytochrome c was detected immunohistochemically. Results: Sepsis increased inflammatory infiltration (p < 0.001) and necrosis (p < 0.001) in renal parenchyma. Apoptosis was significantly more common than in the kidneys of control animals (p = 0.02). Nuclei stained by the TUNEL technique were predominant in the tubular cells of non-survivors (p = 0.05). The time distribution of all types of cell death was increased significantly 6 h after the induction of sepsis, and declined subsequently. Caspase-generated cytokeratin 18 (CK18) new epitope (M30) was significantly more abundant in the kidneys of animals with sepsis than in control rats, with peaks at 6 h and 60 h post-procedure (p < 0.001). In addition, cells initiating apoptosis were significantly more common at 6 h than at 48 h post-CLP (p = 0.014). Caspase-8 protein immunodetection followed the same time pattern as cell death, increasing as early as 6 h post-CLP and decreasing thereafter (p = 0.013). Bax protein expression was elevated significantly early in the course of sepsis (p = 0.037), whereas the other members of the mitochondrial-dependent pathway remained constant. Animals dying from sepsis had a significantly greater prevalence of bax- (p = 0.037) and caspase-8- (p = 0.031) immunoreactive renal cells. Conclusion: Apoptosis in renal tissue was significantly more common in animals with sepsis than in controls. The time distribution of cell death markers showed a consistent pattern, making early sepsis the likely initiator of the apoptotic events.",
author = "Evangelos Messaris and Nikolaos Memos and Emmy Chatzigianni and Agapi Kataki and Marilena Nikolopoulou and Andreas Manouras and Konstadinos Albanopoulos and Konstadoulakis, {Manousos M.} and John Bramis",
year = "2008",
month = "6",
day = "1",
doi = "10.1089/sur.2006.018",
language = "English (US)",
volume = "9",
pages = "377--388",
journal = "Surgical Infections",
issn = "1096-2964",
publisher = "Mary Ann Liebert Inc.",
number = "3",

}

Messaris, E, Memos, N, Chatzigianni, E, Kataki, A, Nikolopoulou, M, Manouras, A, Albanopoulos, K, Konstadoulakis, MM & Bramis, J 2008, 'Apoptotic death of renal tubular cells in experimental sepsis', Surgical Infections, vol. 9, no. 3, pp. 377-388. https://doi.org/10.1089/sur.2006.018

Apoptotic death of renal tubular cells in experimental sepsis. / Messaris, Evangelos; Memos, Nikolaos; Chatzigianni, Emmy; Kataki, Agapi; Nikolopoulou, Marilena; Manouras, Andreas; Albanopoulos, Konstadinos; Konstadoulakis, Manousos M.; Bramis, John.

In: Surgical Infections, Vol. 9, No. 3, 01.06.2008, p. 377-388.

Research output: Contribution to journalArticle

TY - JOUR

T1 - Apoptotic death of renal tubular cells in experimental sepsis

AU - Messaris, Evangelos

AU - Memos, Nikolaos

AU - Chatzigianni, Emmy

AU - Kataki, Agapi

AU - Nikolopoulou, Marilena

AU - Manouras, Andreas

AU - Albanopoulos, Konstadinos

AU - Konstadoulakis, Manousos M.

AU - Bramis, John

PY - 2008/6/1

Y1 - 2008/6/1

N2 - Background and Purpose: Renal dysfunction attributable to sepsis was long considered a result of hemodynamic instability and subsequent local ischemia. Recent data show that apoptosis may be implicated also. The purpose of this study was to evaluate the role of apoptosis and the expression of the bax, bcl-2, caspase-8, and cytochrome c proteins in the renal parenchymal cells of rats with sepsis. Methods: Sepsis was induced using cecal ligation and puncture (CLP) in 62 male Wistar rats, which were euthanized 6, 12, 24, 36, 48, or 60 h later. Ten sham-treated animals served as a control group. Another group of 50 animals were subjected to CLP and then supervised for 60 h. Renal apoptosis was evaluated using light and transmission electron microscopy, in situ nick-end labeling (TUNEL), and flow cytometry using 7-amino-actinomycin D (7-AAD). Caspase-mediated apoptosis was assessed using M30 antibody. The expression of the apoptosis-regulator proteins B-cell lymphoma 2 (bcl-2), bcl-2-associated x protein (bax), caspase-8, and cytochrome c was detected immunohistochemically. Results: Sepsis increased inflammatory infiltration (p < 0.001) and necrosis (p < 0.001) in renal parenchyma. Apoptosis was significantly more common than in the kidneys of control animals (p = 0.02). Nuclei stained by the TUNEL technique were predominant in the tubular cells of non-survivors (p = 0.05). The time distribution of all types of cell death was increased significantly 6 h after the induction of sepsis, and declined subsequently. Caspase-generated cytokeratin 18 (CK18) new epitope (M30) was significantly more abundant in the kidneys of animals with sepsis than in control rats, with peaks at 6 h and 60 h post-procedure (p < 0.001). In addition, cells initiating apoptosis were significantly more common at 6 h than at 48 h post-CLP (p = 0.014). Caspase-8 protein immunodetection followed the same time pattern as cell death, increasing as early as 6 h post-CLP and decreasing thereafter (p = 0.013). Bax protein expression was elevated significantly early in the course of sepsis (p = 0.037), whereas the other members of the mitochondrial-dependent pathway remained constant. Animals dying from sepsis had a significantly greater prevalence of bax- (p = 0.037) and caspase-8- (p = 0.031) immunoreactive renal cells. Conclusion: Apoptosis in renal tissue was significantly more common in animals with sepsis than in controls. The time distribution of cell death markers showed a consistent pattern, making early sepsis the likely initiator of the apoptotic events.

AB - Background and Purpose: Renal dysfunction attributable to sepsis was long considered a result of hemodynamic instability and subsequent local ischemia. Recent data show that apoptosis may be implicated also. The purpose of this study was to evaluate the role of apoptosis and the expression of the bax, bcl-2, caspase-8, and cytochrome c proteins in the renal parenchymal cells of rats with sepsis. Methods: Sepsis was induced using cecal ligation and puncture (CLP) in 62 male Wistar rats, which were euthanized 6, 12, 24, 36, 48, or 60 h later. Ten sham-treated animals served as a control group. Another group of 50 animals were subjected to CLP and then supervised for 60 h. Renal apoptosis was evaluated using light and transmission electron microscopy, in situ nick-end labeling (TUNEL), and flow cytometry using 7-amino-actinomycin D (7-AAD). Caspase-mediated apoptosis was assessed using M30 antibody. The expression of the apoptosis-regulator proteins B-cell lymphoma 2 (bcl-2), bcl-2-associated x protein (bax), caspase-8, and cytochrome c was detected immunohistochemically. Results: Sepsis increased inflammatory infiltration (p < 0.001) and necrosis (p < 0.001) in renal parenchyma. Apoptosis was significantly more common than in the kidneys of control animals (p = 0.02). Nuclei stained by the TUNEL technique were predominant in the tubular cells of non-survivors (p = 0.05). The time distribution of all types of cell death was increased significantly 6 h after the induction of sepsis, and declined subsequently. Caspase-generated cytokeratin 18 (CK18) new epitope (M30) was significantly more abundant in the kidneys of animals with sepsis than in control rats, with peaks at 6 h and 60 h post-procedure (p < 0.001). In addition, cells initiating apoptosis were significantly more common at 6 h than at 48 h post-CLP (p = 0.014). Caspase-8 protein immunodetection followed the same time pattern as cell death, increasing as early as 6 h post-CLP and decreasing thereafter (p = 0.013). Bax protein expression was elevated significantly early in the course of sepsis (p = 0.037), whereas the other members of the mitochondrial-dependent pathway remained constant. Animals dying from sepsis had a significantly greater prevalence of bax- (p = 0.037) and caspase-8- (p = 0.031) immunoreactive renal cells. Conclusion: Apoptosis in renal tissue was significantly more common in animals with sepsis than in controls. The time distribution of cell death markers showed a consistent pattern, making early sepsis the likely initiator of the apoptotic events.

UR - http://www.scopus.com/inward/record.url?scp=45749130176&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=45749130176&partnerID=8YFLogxK

U2 - 10.1089/sur.2006.018

DO - 10.1089/sur.2006.018

M3 - Article

VL - 9

SP - 377

EP - 388

JO - Surgical Infections

JF - Surgical Infections

SN - 1096-2964

IS - 3

ER -

Messaris E, Memos N, Chatzigianni E, Kataki A, Nikolopoulou M, Manouras A et al. Apoptotic death of renal tubular cells in experimental sepsis. Surgical Infections. 2008 Jun 1;9(3):377-388. https://doi.org/10.1089/sur.2006.018