Application of Micromachined y -cut-quartz bulk acoustic wave resonator for infrared sensing

Marcelo B. Pisani, Kailiang Ren, Ping Kao, Srinivas Tadigadapa

Research output: Contribution to journalArticlepeer-review

47 Scopus citations

Abstract

This paper presents the design, fabrication, and characterization of thermal infrared (IR) imaging arrays operating at room temperature which are based on Y-cut-quartz bulk acoustic wave resonators. A novel method of tracking the resonance frequency based upon the measurement of impedance is presented. High-frequency (240-MHz) micromachined resonators from Y-cut-quartz crystal cuts were fabricated using heterogeneous integration techniques on a silicon wafer. A temperature sensitivity of 22.16 kHz/°C was experimentally measured. IR measurements on the resonator pixel resulted in a noise equivalent power of 3.90 nW/Hz1/2, a detectivity Dof 1 × 10-5cmHz1/2W, and a noise equivalent temperature difference of 4 mK in the 8- to 14-μm wavelength range. The thermal frequency response of the resonator was determined to be faster than 33 Hz, demonstrating its applicability in video-rate uncooled IR imaging. This work represents the first comprehensive thermal characterization of micromachined Y -cut-quartz resonators and their IR sensing response.

Original languageEnglish (US)
Article number5685833
Pages (from-to)288-296
Number of pages9
JournalJournal of Microelectromechanical Systems
Volume20
Issue number1
DOIs
StatePublished - Feb 2011

All Science Journal Classification (ASJC) codes

  • Mechanical Engineering
  • Electrical and Electronic Engineering

Fingerprint Dive into the research topics of 'Application of Micromachined y -cut-quartz bulk acoustic wave resonator for infrared sensing'. Together they form a unique fingerprint.

Cite this