Application of screw displacement axes to quantify elbow instability

Teresa R. Duck, Cynthia E. Dunning, April Armstrong, James A. Johnson, Graham J.W. King

Research output: Contribution to journalArticle

17 Citations (Scopus)

Abstract

Objectives. To determine if screw displacement axis patterns describing elbow joint motion: (1) change after ligament transection in vitro; (2) can reflect subtle changes in stability as a function of forearm position; (3) can reflect dynamic stabilization of the ligament insufficient elbow provided by muscle activity. Design. An in vitro kinematic study of eighteen cadaveric specimens tested in a joint simulator. Background. In the elbow joint, screw displacement axes have been employed for proper positioning and design of endoprostheses. The effect of instability on screw displacement axes has not been previously reported. Methods. Passive and simulated active flexion, with the forearm maintained in both pronation and supination, was performed on eighteen intact and ligament insufficient elbows. Instability was produced by transection of the medial collateral or lateral collateral ligament complexes. Kinematics were recorded using an electromagnetic tracking device and analyzed with a repeated measures design. Results. During passive motion, division of either ligament caused deviation of screw displacement axes compared to the intact state (P<0.05). Transection of the medial/lateral collateral ligament generated greater instability with the forearm maintained in pronation/supination compared to supination/pronation (P<0.05). Muscle activation increased stability similar to the intact state (P>0.05). Conclusions. These results are consistent with observations determined using traditional kinematic descriptors. Screw displacement axes can readily detect changes in stability due to ligament sectioning.Relevance Clinicians can employ the screw displacement axis technique as a succinct descriptor of motion to readily detect elbow instability.

Original languageEnglish (US)
Pages (from-to)303-310
Number of pages8
JournalClinical Biomechanics
Volume18
Issue number4
DOIs
StatePublished - Jan 1 2003

Fingerprint

Elbow
Ligaments
Biomechanical Phenomena
Elbow Joint
Forearm
Ankle Lateral Ligament
Pronation
Supination
Electromagnetic Phenomena
Joints
Equipment and Supplies
Muscles
In Vitro Techniques

All Science Journal Classification (ASJC) codes

  • Biophysics
  • Orthopedics and Sports Medicine

Cite this

Duck, Teresa R. ; Dunning, Cynthia E. ; Armstrong, April ; Johnson, James A. ; King, Graham J.W. / Application of screw displacement axes to quantify elbow instability. In: Clinical Biomechanics. 2003 ; Vol. 18, No. 4. pp. 303-310.
@article{b6f31b380876419d9715909deaae0c5d,
title = "Application of screw displacement axes to quantify elbow instability",
abstract = "Objectives. To determine if screw displacement axis patterns describing elbow joint motion: (1) change after ligament transection in vitro; (2) can reflect subtle changes in stability as a function of forearm position; (3) can reflect dynamic stabilization of the ligament insufficient elbow provided by muscle activity. Design. An in vitro kinematic study of eighteen cadaveric specimens tested in a joint simulator. Background. In the elbow joint, screw displacement axes have been employed for proper positioning and design of endoprostheses. The effect of instability on screw displacement axes has not been previously reported. Methods. Passive and simulated active flexion, with the forearm maintained in both pronation and supination, was performed on eighteen intact and ligament insufficient elbows. Instability was produced by transection of the medial collateral or lateral collateral ligament complexes. Kinematics were recorded using an electromagnetic tracking device and analyzed with a repeated measures design. Results. During passive motion, division of either ligament caused deviation of screw displacement axes compared to the intact state (P<0.05). Transection of the medial/lateral collateral ligament generated greater instability with the forearm maintained in pronation/supination compared to supination/pronation (P<0.05). Muscle activation increased stability similar to the intact state (P>0.05). Conclusions. These results are consistent with observations determined using traditional kinematic descriptors. Screw displacement axes can readily detect changes in stability due to ligament sectioning.Relevance Clinicians can employ the screw displacement axis technique as a succinct descriptor of motion to readily detect elbow instability.",
author = "Duck, {Teresa R.} and Dunning, {Cynthia E.} and April Armstrong and Johnson, {James A.} and King, {Graham J.W.}",
year = "2003",
month = "1",
day = "1",
doi = "10.1016/S0268-0033(03)00021-4",
language = "English (US)",
volume = "18",
pages = "303--310",
journal = "Clinical Biomechanics",
issn = "0268-0033",
publisher = "Elsevier Limited",
number = "4",

}

Application of screw displacement axes to quantify elbow instability. / Duck, Teresa R.; Dunning, Cynthia E.; Armstrong, April; Johnson, James A.; King, Graham J.W.

In: Clinical Biomechanics, Vol. 18, No. 4, 01.01.2003, p. 303-310.

Research output: Contribution to journalArticle

TY - JOUR

T1 - Application of screw displacement axes to quantify elbow instability

AU - Duck, Teresa R.

AU - Dunning, Cynthia E.

AU - Armstrong, April

AU - Johnson, James A.

AU - King, Graham J.W.

PY - 2003/1/1

Y1 - 2003/1/1

N2 - Objectives. To determine if screw displacement axis patterns describing elbow joint motion: (1) change after ligament transection in vitro; (2) can reflect subtle changes in stability as a function of forearm position; (3) can reflect dynamic stabilization of the ligament insufficient elbow provided by muscle activity. Design. An in vitro kinematic study of eighteen cadaveric specimens tested in a joint simulator. Background. In the elbow joint, screw displacement axes have been employed for proper positioning and design of endoprostheses. The effect of instability on screw displacement axes has not been previously reported. Methods. Passive and simulated active flexion, with the forearm maintained in both pronation and supination, was performed on eighteen intact and ligament insufficient elbows. Instability was produced by transection of the medial collateral or lateral collateral ligament complexes. Kinematics were recorded using an electromagnetic tracking device and analyzed with a repeated measures design. Results. During passive motion, division of either ligament caused deviation of screw displacement axes compared to the intact state (P<0.05). Transection of the medial/lateral collateral ligament generated greater instability with the forearm maintained in pronation/supination compared to supination/pronation (P<0.05). Muscle activation increased stability similar to the intact state (P>0.05). Conclusions. These results are consistent with observations determined using traditional kinematic descriptors. Screw displacement axes can readily detect changes in stability due to ligament sectioning.Relevance Clinicians can employ the screw displacement axis technique as a succinct descriptor of motion to readily detect elbow instability.

AB - Objectives. To determine if screw displacement axis patterns describing elbow joint motion: (1) change after ligament transection in vitro; (2) can reflect subtle changes in stability as a function of forearm position; (3) can reflect dynamic stabilization of the ligament insufficient elbow provided by muscle activity. Design. An in vitro kinematic study of eighteen cadaveric specimens tested in a joint simulator. Background. In the elbow joint, screw displacement axes have been employed for proper positioning and design of endoprostheses. The effect of instability on screw displacement axes has not been previously reported. Methods. Passive and simulated active flexion, with the forearm maintained in both pronation and supination, was performed on eighteen intact and ligament insufficient elbows. Instability was produced by transection of the medial collateral or lateral collateral ligament complexes. Kinematics were recorded using an electromagnetic tracking device and analyzed with a repeated measures design. Results. During passive motion, division of either ligament caused deviation of screw displacement axes compared to the intact state (P<0.05). Transection of the medial/lateral collateral ligament generated greater instability with the forearm maintained in pronation/supination compared to supination/pronation (P<0.05). Muscle activation increased stability similar to the intact state (P>0.05). Conclusions. These results are consistent with observations determined using traditional kinematic descriptors. Screw displacement axes can readily detect changes in stability due to ligament sectioning.Relevance Clinicians can employ the screw displacement axis technique as a succinct descriptor of motion to readily detect elbow instability.

UR - http://www.scopus.com/inward/record.url?scp=0037402875&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0037402875&partnerID=8YFLogxK

U2 - 10.1016/S0268-0033(03)00021-4

DO - 10.1016/S0268-0033(03)00021-4

M3 - Article

C2 - 12689780

AN - SCOPUS:0037402875

VL - 18

SP - 303

EP - 310

JO - Clinical Biomechanics

JF - Clinical Biomechanics

SN - 0268-0033

IS - 4

ER -