Application of the PID control to the programmable logic controller course

Research output: Contribution to journalConference article

Abstract

The proportional, integral, and derivative (PID) control is the most widely used control technique in the automation industries. The importance of the PID control is emphasized in various automatic control courses. This topic could easily be incorporated into the programmable logic controller (PLC) course with both static and dynamic teaching components. In this paper, the integration of the PID function into the PLC course is described. The proposed new PID teaching components consist of an oven heater and a light dimming control as the static applications, and the closed-loop velocity control of a permanent magnet DC motor (PMDCM) as the dynamic application. The RSLogix500 ladder logic programming software from Rockwell Automation has the PID function. After the theoretical background of the PID control is discussed, the PID function of the SLC500 will be introduced. The first exercise is the pure mathematical implementation of the PID control algorithm using only mathematical PLC instructions. The Excel spreadsheet is used to verify the mathematical PID control algorithm. This will give more insight into the PID control. Following this, the class completes the exercise with the PID instruction in RSLogix500. Both methods will be compared in terms of speed, complexity, and accuracy. The laboratory assignments in controlling the oven heater temperature and dimming the lamp are given to the students so that they experience the effectiveness of the PID control. The students will practice the scaling of input and output variables and loop closure through this exercise. The closed-loop control concept is emphasized through these exercises. The closed-loop PMDCM control is the last assignment of the PID teaching components. The two PMDCMs are connected back-to-back to form a motor-generator set. The PMDCM generator works as a tachometer to close the velocity loop. The various step responses of the proposed PID controller based on the SLC500 PLC are investigated to decide the optimal tuning of the velocity control loop. The assessment methods are included in the assessment section.

Original languageEnglish (US)
JournalASEE Annual Conference and Exposition, Conference Proceedings
StatePublished - Jan 1 2009
Event2009 ASEE Annual Conference and Exposition - Austin, TX, United States
Duration: Jun 14 2009Jun 17 2009

Fingerprint

Programmable logic controllers
Derivatives
Dimming (lamps)
Permanent magnets
Velocity control
Teaching
DC motors
Ovens
DC generator motors
Automation
Tachometers
Students
Step response
Logic programming
Spreadsheets
Ladders
Electric lamps
Tuning

All Science Journal Classification (ASJC) codes

  • Engineering(all)

Cite this

@article{ab3965a4bdf3439c80a1bd00036249fd,
title = "Application of the PID control to the programmable logic controller course",
abstract = "The proportional, integral, and derivative (PID) control is the most widely used control technique in the automation industries. The importance of the PID control is emphasized in various automatic control courses. This topic could easily be incorporated into the programmable logic controller (PLC) course with both static and dynamic teaching components. In this paper, the integration of the PID function into the PLC course is described. The proposed new PID teaching components consist of an oven heater and a light dimming control as the static applications, and the closed-loop velocity control of a permanent magnet DC motor (PMDCM) as the dynamic application. The RSLogix500 ladder logic programming software from Rockwell Automation has the PID function. After the theoretical background of the PID control is discussed, the PID function of the SLC500 will be introduced. The first exercise is the pure mathematical implementation of the PID control algorithm using only mathematical PLC instructions. The Excel spreadsheet is used to verify the mathematical PID control algorithm. This will give more insight into the PID control. Following this, the class completes the exercise with the PID instruction in RSLogix500. Both methods will be compared in terms of speed, complexity, and accuracy. The laboratory assignments in controlling the oven heater temperature and dimming the lamp are given to the students so that they experience the effectiveness of the PID control. The students will practice the scaling of input and output variables and loop closure through this exercise. The closed-loop control concept is emphasized through these exercises. The closed-loop PMDCM control is the last assignment of the PID teaching components. The two PMDCMs are connected back-to-back to form a motor-generator set. The PMDCM generator works as a tachometer to close the velocity loop. The various step responses of the proposed PID controller based on the SLC500 PLC are investigated to decide the optimal tuning of the velocity control loop. The assessment methods are included in the assessment section.",
author = "Shiyoung Lee",
year = "2009",
month = "1",
day = "1",
language = "English (US)",
journal = "ASEE Annual Conference and Exposition, Conference Proceedings",
issn = "2153-5965",

}

TY - JOUR

T1 - Application of the PID control to the programmable logic controller course

AU - Lee, Shiyoung

PY - 2009/1/1

Y1 - 2009/1/1

N2 - The proportional, integral, and derivative (PID) control is the most widely used control technique in the automation industries. The importance of the PID control is emphasized in various automatic control courses. This topic could easily be incorporated into the programmable logic controller (PLC) course with both static and dynamic teaching components. In this paper, the integration of the PID function into the PLC course is described. The proposed new PID teaching components consist of an oven heater and a light dimming control as the static applications, and the closed-loop velocity control of a permanent magnet DC motor (PMDCM) as the dynamic application. The RSLogix500 ladder logic programming software from Rockwell Automation has the PID function. After the theoretical background of the PID control is discussed, the PID function of the SLC500 will be introduced. The first exercise is the pure mathematical implementation of the PID control algorithm using only mathematical PLC instructions. The Excel spreadsheet is used to verify the mathematical PID control algorithm. This will give more insight into the PID control. Following this, the class completes the exercise with the PID instruction in RSLogix500. Both methods will be compared in terms of speed, complexity, and accuracy. The laboratory assignments in controlling the oven heater temperature and dimming the lamp are given to the students so that they experience the effectiveness of the PID control. The students will practice the scaling of input and output variables and loop closure through this exercise. The closed-loop control concept is emphasized through these exercises. The closed-loop PMDCM control is the last assignment of the PID teaching components. The two PMDCMs are connected back-to-back to form a motor-generator set. The PMDCM generator works as a tachometer to close the velocity loop. The various step responses of the proposed PID controller based on the SLC500 PLC are investigated to decide the optimal tuning of the velocity control loop. The assessment methods are included in the assessment section.

AB - The proportional, integral, and derivative (PID) control is the most widely used control technique in the automation industries. The importance of the PID control is emphasized in various automatic control courses. This topic could easily be incorporated into the programmable logic controller (PLC) course with both static and dynamic teaching components. In this paper, the integration of the PID function into the PLC course is described. The proposed new PID teaching components consist of an oven heater and a light dimming control as the static applications, and the closed-loop velocity control of a permanent magnet DC motor (PMDCM) as the dynamic application. The RSLogix500 ladder logic programming software from Rockwell Automation has the PID function. After the theoretical background of the PID control is discussed, the PID function of the SLC500 will be introduced. The first exercise is the pure mathematical implementation of the PID control algorithm using only mathematical PLC instructions. The Excel spreadsheet is used to verify the mathematical PID control algorithm. This will give more insight into the PID control. Following this, the class completes the exercise with the PID instruction in RSLogix500. Both methods will be compared in terms of speed, complexity, and accuracy. The laboratory assignments in controlling the oven heater temperature and dimming the lamp are given to the students so that they experience the effectiveness of the PID control. The students will practice the scaling of input and output variables and loop closure through this exercise. The closed-loop control concept is emphasized through these exercises. The closed-loop PMDCM control is the last assignment of the PID teaching components. The two PMDCMs are connected back-to-back to form a motor-generator set. The PMDCM generator works as a tachometer to close the velocity loop. The various step responses of the proposed PID controller based on the SLC500 PLC are investigated to decide the optimal tuning of the velocity control loop. The assessment methods are included in the assessment section.

UR - http://www.scopus.com/inward/record.url?scp=85029099705&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85029099705&partnerID=8YFLogxK

M3 - Conference article

AN - SCOPUS:85029099705

JO - ASEE Annual Conference and Exposition, Conference Proceedings

JF - ASEE Annual Conference and Exposition, Conference Proceedings

SN - 2153-5965

ER -