Apremilast ameliorates experimental arthritis via suppression of Th1 and Th17 cells and enhancement of CD4+Foxp3+ regulatory T cells differentiation

Weiqian Chen, Julie Wang, Zhenjian Xu, Feng Huang, Wenbin Qian, Jilin Ma, Hwa Bok Wee, Gregory S. Lewis, Rayford R. June, Peter H. Schafer, Jin Lin, Song Guo Zheng

Research output: Contribution to journalArticlepeer-review

16 Scopus citations

Abstract

Apremilast is a novel phosphodiesterase 4 (PDE4) inhibitor suppressing immune and inflammatory responses. We assessed the anti-inflammatory effects of Apremilast in type II collagen (CII)-induced arthritis (CIA) mouse model. To determine whether Apremilast can ameliorate arthritis onset in this model, Apremilast was given orally at day 14 after CII immunization. Bone erosion was measured by histological and micro-computed tomographic analysis. Anti-mouse CII antibody levels were measured by enzyme-linked immunosorbent assay, and Th17, Th1 cells, and CD4+Foxp3+ regulatory T (Treg) cells were assessed by flow cytometry in the lymph nodes. Human cartilage and rheumatoid arthritis (RA) synovial fibroblasts (RASFs) implantation in the severe combined immunodeficiency mouse model of RA were used to study the role of Apremilast in the suppression of RASF-mediated cartilage destruction in vivo. Compared with untreated and vehicle control groups, we found that Apremilast therapy delayed arthritis onset and reduced arthritis scores in the CIA model. Total serum IgG, IgG1, IgG2a, and IgG2b were all decreased in the Apremilast treatment groups. Moreover, Apremilast markedly prevented the development of bone erosions in CIA mice by CT analysis. Furthermore, in the Apremilast treated group, the frequency of Th17 cells and Th1 cells was significantly decreased while Treg cells' frequency was significantly increased. The high dose of Apremilast (25 mg/kg) was superior to low dose (5 mg/kg) in treating CIA. Apremilast treatment reduced the migratory ability of RASFs and their destructive effect on cartilage. Compared with the model group, Apremilast treatment significantly reduced the RASFs invasion cartilage scores in both primary implant and contralateral implant models. Our data suggest that Apremilast is effective in treating autoimmune arthritis and preventing the bone erosion in the CIA model, implicating its therapeutic potential in patients with RA.

Original languageEnglish (US)
Article number1662
JournalFrontiers in immunology
Volume9
Issue numberJUL
DOIs
StatePublished - Jul 18 2018

All Science Journal Classification (ASJC) codes

  • Immunology and Allergy
  • Immunology

Fingerprint Dive into the research topics of 'Apremilast ameliorates experimental arthritis via suppression of Th1 and Th17 cells and enhancement of CD4<sup>+</sup>Foxp3<sup>+</sup> regulatory T cells differentiation'. Together they form a unique fingerprint.

Cite this