TY - JOUR
T1 - Assessing boundary condition and parametric uncertainty in numerical-weather-prediction-modeled, long-term offshore wind speed through machine learning and analog ensemble
AU - Bodini, Nicola
AU - Hu, Weiming
AU - Optis, Mike
AU - Cervone, Guido
AU - Alessandrini, Stefano
N1 - Funding Information:
Acknowledgements. This research was performed using computational resources sponsored by the U.S. Department of Energy’s Office of Energy Efficiency and Renewable Energy and located at the National Renewable Energy Laboratory. The authors thank Michael Rossol for his help in performing some of the computations using the National Renewable Energy Laboratory’s High-Performance Computing Center.
Funding Information:
Copyright statement. This work was authored in part by the National Renewable Energy Laboratory, operated by Alliance for Sustainable Energy, LLC, for the U.S. Department of Energy (DOE) under Contract No. DE-AC36-08GO28308. Funding provided by the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy Wind Energy Technologies Office, by the Bureau of Ocean Energy Management (BOEM) under agreement no. IAG-19-2123 and by the National Offshore Wind Research and Development Consortium under agreement no. CRD-19-16351. The views expressed in the article do not necessarily represent the views of the DOE or the U.S. Government. The U.S. Government retains and the publisher, by accepting the article for publication, acknowledges that the U.S. Government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this work, or allow others to do so, for U.S. Government purposes.
Publisher Copyright:
© Author(s) 2021.
PY - 2021/11/3
Y1 - 2021/11/3
N2 - To accurately plan and manage wind power plants, not only does the time-varying wind resource at the site of interest need to be assessed but also the uncertainty connected to this estimate. Numerical weather prediction (NWP) models at the mesoscale represent a valuable way to characterize the wind resource offshore, given the challenges connected with measuring hub-height wind speed. The boundary condition and parametric uncertainty associated with modeled wind speed is often estimated by running a model ensemble. However, creating an NWP ensemble of long-term wind resource data over a large region represents a computational challenge. Here, we propose two approaches to temporally extrapolate wind speed boundary condition and parametric uncertainty using a more convenient setup in which a mesoscale ensemble is run over a short-term period (1 year), and only a single model covers the desired long-term period (20 year). We quantify hub-height wind speed boundary condition and parametric uncertainty from the short-term model ensemble as its normalized across-ensemble standard deviation. Then, we develop and apply a gradient-boosting model and an analog ensemble approach to temporally extrapolate such uncertainty to the full 20-year period, for which only a single model run is available. As a test case, we consider offshore wind resource characterization in the California Outer Continental Shelf. Both of the proposed approaches provide accurate estimates of the long-term wind speed boundary condition and parametric uncertainty across the region (R2>0.75), with the gradient-boosting model slightly outperforming the analog ensemble in terms of bias and centered root-mean-square error. At the three offshore wind energy lease areas in the region, we find a long-term median hourly uncertainty between 10 % and 14 % of the mean hub-height wind speed values. Finally, we assess the physical variability in the uncertainty estimates. In general, we find that the wind speed uncertainty increases closer to land. Also, neutral conditions have smaller uncertainty than the stable and unstable cases, and the modeled wind speed in winter has less boundary condition and parametric sensitivity than summer.
AB - To accurately plan and manage wind power plants, not only does the time-varying wind resource at the site of interest need to be assessed but also the uncertainty connected to this estimate. Numerical weather prediction (NWP) models at the mesoscale represent a valuable way to characterize the wind resource offshore, given the challenges connected with measuring hub-height wind speed. The boundary condition and parametric uncertainty associated with modeled wind speed is often estimated by running a model ensemble. However, creating an NWP ensemble of long-term wind resource data over a large region represents a computational challenge. Here, we propose two approaches to temporally extrapolate wind speed boundary condition and parametric uncertainty using a more convenient setup in which a mesoscale ensemble is run over a short-term period (1 year), and only a single model covers the desired long-term period (20 year). We quantify hub-height wind speed boundary condition and parametric uncertainty from the short-term model ensemble as its normalized across-ensemble standard deviation. Then, we develop and apply a gradient-boosting model and an analog ensemble approach to temporally extrapolate such uncertainty to the full 20-year period, for which only a single model run is available. As a test case, we consider offshore wind resource characterization in the California Outer Continental Shelf. Both of the proposed approaches provide accurate estimates of the long-term wind speed boundary condition and parametric uncertainty across the region (R2>0.75), with the gradient-boosting model slightly outperforming the analog ensemble in terms of bias and centered root-mean-square error. At the three offshore wind energy lease areas in the region, we find a long-term median hourly uncertainty between 10 % and 14 % of the mean hub-height wind speed values. Finally, we assess the physical variability in the uncertainty estimates. In general, we find that the wind speed uncertainty increases closer to land. Also, neutral conditions have smaller uncertainty than the stable and unstable cases, and the modeled wind speed in winter has less boundary condition and parametric sensitivity than summer.
UR - http://www.scopus.com/inward/record.url?scp=85118787232&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85118787232&partnerID=8YFLogxK
U2 - 10.5194/wes-6-1363-2021
DO - 10.5194/wes-6-1363-2021
M3 - Article
AN - SCOPUS:85118787232
SN - 2366-7443
VL - 6
SP - 1363
EP - 1377
JO - Wind Energy Science
JF - Wind Energy Science
IS - 6
ER -