Assessing relationships between chromatin interactions and regulatory genomic activities using the self-organizing map

Timothy Kunz, Lila Rieber, Shaun Mahony

Research output: Contribution to journalArticle

Abstract

Few existing methods enable the visualization of relationships between regulatory genomic activities and genome organization as captured by Hi-C experimental data. Genome-wide Hi-C datasets are often displayed using "heatmap" matrices, but it is difficult to intuit from these heatmaps which biochemical activities are compartmentalized together. High-dimensional Hi-C data vectors can alternatively be projected onto three-dimensional space using dimensionality reduction techniques. The resulting three-dimensional structures can serve as scaffolds for projecting other forms of genomic information, thereby enabling the exploration of relationships between genome organization and various genome annotations. However, while three-dimensional models are contextually appropriate for chromatin interaction data, some analyses and visualizations may be more intuitively and conveniently performed in two-dimensional space. We present a novel approach to the visualization and analysis of chromatin organization based on the Self-Organizing Map (SOM). The SOM algorithm provides a two-dimensional manifold which adapts to represent the high dimensional chromatin interaction space. The resulting data structure can then be used to assess relationships between regulatory genomic activities and chromatin interactions. For example, given a set of genomic coordinates corresponding to a given biochemical activity, the degree to which this activity is segregated or compartmentalized in chromatin interaction space can be intuitively visualized on the 2D SOM grid and quantified using Lorenz curve analysis. We demonstrate our approach for exploratory analysis of genome compartmentalization in a high-resolution Hi-C dataset from the human GM12878 cell line. Our SOM-based approach provides an intuitive visualization of the large-scale structure of Hi-C data and serves as a platform for integrative analyses of the relationships between various genomic activities and genome organization.

Original languageEnglish (US)
JournalMethods
DOIs
StateE-pub ahead of print - Jul 9 2020

Fingerprint Dive into the research topics of 'Assessing relationships between chromatin interactions and regulatory genomic activities using the self-organizing map'. Together they form a unique fingerprint.

  • Cite this