Assessment of image-derived risk factors for natural course of unruptured cerebral aneurysms

Manasi Ramachandran, Rohini Retarekar, Madhavan L. Raghavan, Benjamin Berkowitz, Benjamin Dickerhoff, Tatiana Correa, Steve Lin, Kevin Johnson, David Hasan, Christopher Ogilvy, Robert Rosenwasser, James Torner, Einar Bogason, Christopher J. Stapleton, Robert E. Harbaugh

Research output: Contribution to journalArticlepeer-review

20 Scopus citations

Abstract

Objective: The goal of this prospective longitudinal study was to test whether image-derived metrics can differentiate unruptured aneurysms that will become unstable (grow and/or rupture) from those that will remain stable. Methods: One hundred seventy-eight patients harboring 198 unruptured cerebral aneurysms for whom clinical observation and follow-up with imaging surveillance was recommended at 4 clinical centers were prospectively recruited into this study. Imaging data (predominantly CT angiography) at initial presentation was recorded. Computational geometry was used to estimate numerous metrics of aneurysm morphology that described the size and shape of the aneurysm. The nonlinear, finite element method was used to estimate uniform pressure-induced peak wall tension. Computational fluid dynamics was used to estimate blood flow metrics. The median follow-up period was 645 days. Longitudinal outcome data on these aneurysm patients - whether their aneurysms grew or ruptured (the unstable group) or remained unchanged (the stable group) - was documented based on follow-up at 4 years after the beginning of recruitment. Results: Twenty aneurysms (10.1%) grew, but none ruptured. One hundred forty-nine aneurysms (75.3%) remained stable and 29 (14.6%) were lost to follow-up. None of the metrics - including aneurysm size, nonsphericity index, peak wall tension, and low shear stress area - differentiated the stable from unstable groups with statistical significance. Conclusions: The findings in this highly selected group do not support the hypothesis that image-derived metrics can predict aneurysm growth in patients who have been selected for observation and imaging surveillance. If aneurysm shape is a significant determinant of invasive versus expectant management, selection bias is a key limitation of this study.

Original languageEnglish (US)
Pages (from-to)288-295
Number of pages8
JournalJournal of neurosurgery
Volume124
Issue number2
DOIs
StatePublished - 2016

All Science Journal Classification (ASJC) codes

  • Surgery
  • Clinical Neurology

Fingerprint Dive into the research topics of 'Assessment of image-derived risk factors for natural course of unruptured cerebral aneurysms'. Together they form a unique fingerprint.

Cite this