Atmospheric mercury concentrations: Measurements and profiles near snow and ice surfaces in the Canadian Arctic during Alert 2000

Alexandra Steffen, William Schroeder, Jan Bottenheim, Julie Narayan, Jose D. Fuentes

Research output: Contribution to journalArticlepeer-review

109 Scopus citations

Abstract

Gaseous elemental mercury (GEM) concentration measurements were made during the Alert 2000 campaign in Alert, Nunavut, Canada, between February and May 2000. GEM exhibits dramatic mercury depletion events (MDE) concurrently with ozone in the troposphere during the Arctic springtime. Using a cold regions pyrolysis unit, it was confirmed that GEM is converted to more reactive mercury species during the MDEs. It was determined that on average 48% of this converted GEM was recovered through pyrolysis suggesting that the remaining converted GEM is deposited on the snow surfaces. Samples collected during this campaign showed an approximate 20 fold increase in mercury concentrations in the snow from the dark to light periods. Vertical gradient air profiling experiments were conducted. In the non-depletion periods GEM was found to be invariant in the air column between surface and 1-2m heights. During a depletion period, GEM was found to be invariant in the air column except at the surface where a noticeable increase in the GEM concentration was observed. Concurrent ozone concentration profiles showed a small gradient in the air column but a sharp decrease in ozone concentration at the surface. Other profile studies showed a 41% average GEM concentration difference between the interstitial air in the snow pack and ∼2m above the surface suggesting that GEM is emitted from the snow pack. Further profile studies showed that during MDEs surface level GEM exhibits spikes of mercury concentrations that were over double the ambient GEM concentrations. It is thought that the solar radiation may reduce reactive mercury that is deposited on the snow surface during a MDE back to its elemental form which is then increasingly released from the snow pack as the temperature increases during the day. This is observed when wind speeds are very low. Crown

Original languageEnglish (US)
Pages (from-to)2653-2661
Number of pages9
JournalAtmospheric Environment
Volume36
Issue number15-16
DOIs
StatePublished - 2002

All Science Journal Classification (ASJC) codes

  • Environmental Science(all)
  • Atmospheric Science

Fingerprint Dive into the research topics of 'Atmospheric mercury concentrations: Measurements and profiles near snow and ice surfaces in the Canadian Arctic during Alert 2000'. Together they form a unique fingerprint.

Cite this