TY - GEN
T1 - Atomistic mechanism of ion beam deposition induced curvature formation in thin-films
AU - Terdalkar, Sachin S.
AU - Zhang, Sulin
AU - Rencis, Joseph J.
PY - 2007/1/1
Y1 - 2007/1/1
N2 - Molecular dynamics (MD) simulations are performed to study the stress generation mechanisms in cantilever graphene sheets impacted by energetic carbon neutrals. The carbon-carbon interactions are described by the Tersoff-Brenner potential [1]. The MD simulations show that the free-end deflection of the graphene sheets is strongly dependent on the kinetic energy of the incident ions. At low incident energy (<<10eV), the free end bends towards to the side on which ions are deposited (upward deflection); at high incident energy, the free end bends away from the side on which the ions are deposited (downward deflection). The downward deflection reaches its maximum at around 50 eV, beyond which the downward deflection decreases with increasing incident energies. In addition, the evolution of the free-end deflection in terms of the number of deposited atoms is also dependent on the kinetic energy of the incident ions. These numerical observations suggest that intrinsic stress of different levels in the graphene sheets is generated. A close examination of the microstructures of the grown films indicates that the generated stress can be attributed to a competing mechanism of the production and annihilation of vacancy-like and interstitial-like defects in the films.
AB - Molecular dynamics (MD) simulations are performed to study the stress generation mechanisms in cantilever graphene sheets impacted by energetic carbon neutrals. The carbon-carbon interactions are described by the Tersoff-Brenner potential [1]. The MD simulations show that the free-end deflection of the graphene sheets is strongly dependent on the kinetic energy of the incident ions. At low incident energy (<<10eV), the free end bends towards to the side on which ions are deposited (upward deflection); at high incident energy, the free end bends away from the side on which the ions are deposited (downward deflection). The downward deflection reaches its maximum at around 50 eV, beyond which the downward deflection decreases with increasing incident energies. In addition, the evolution of the free-end deflection in terms of the number of deposited atoms is also dependent on the kinetic energy of the incident ions. These numerical observations suggest that intrinsic stress of different levels in the graphene sheets is generated. A close examination of the microstructures of the grown films indicates that the generated stress can be attributed to a competing mechanism of the production and annihilation of vacancy-like and interstitial-like defects in the films.
UR - http://www.scopus.com/inward/record.url?scp=84928598569&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84928598569&partnerID=8YFLogxK
U2 - 10.1115/IMECE200741896
DO - 10.1115/IMECE200741896
M3 - Conference contribution
AN - SCOPUS:84928598569
T3 - ASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE)
SP - 1169
EP - 1174
BT - Micro and Nano Systems
PB - American Society of Mechanical Engineers (ASME)
T2 - ASME 2007 International Mechanical Engineering Congress and Exposition, IMECE 2007
Y2 - 11 November 2007 through 15 November 2007
ER -