Autofluorescence Bronchoscopy Video Analysis for Lesion Frame Detection

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Because of the significance of bronchial lesions as indicators of early lung cancer and squamous cell carcinoma, a critical need exists for early detection of bronchial lesions. Autofluorescence bronchoscopy (AFB) is a primary modality used for bronchial lesion detection, as it shows high sensitivity to suspicious lesions. The physician, however, must interactively browse a long video stream to locate lesions, making the search exceedingly tedious and error prone. Unfortunately, limited research has explored the use of automated AFB video analysis for efficient lesion detection. We propose a robust automatic AFB analysis approach that distinguishes informative and uninformative AFB video frames in a video. In addition, for the informative frames, we determine the frames containing potential lesions and delineate candidate lesion regions. Our approach draws upon a combination of computer-based image analysis, machine learning, and deep learning. Thus, the analysis of an AFB video stream becomes more tractable. Using patient AFB video, 99.5%/90.2% of test frames were correctly labeled as informative/uninformative by our method versus 99.2%/47.6% by ResNet. In addition, ≥97% of lesion frames were correctly identified, with false positive and false negative rates ≤3%.Clinical relevance - The method makes AFB-based bronchial lesion analysis more efficient, thereby helping to advance the goal of better early lung cancer detection.

Original languageEnglish (US)
Title of host publication42nd Annual International Conferences of the IEEE Engineering in Medicine and Biology Society
Subtitle of host publicationEnabling Innovative Technologies for Global Healthcare, EMBC 2020
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages1556-1559
Number of pages4
ISBN (Electronic)9781728119908
DOIs
StatePublished - Jul 2020
Event42nd Annual International Conferences of the IEEE Engineering in Medicine and Biology Society, EMBC 2020 - Montreal, Canada
Duration: Jul 20 2020Jul 24 2020

Publication series

NameProceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS
Volume2020-July
ISSN (Print)1557-170X

Conference

Conference42nd Annual International Conferences of the IEEE Engineering in Medicine and Biology Society, EMBC 2020
CountryCanada
CityMontreal
Period7/20/207/24/20

All Science Journal Classification (ASJC) codes

  • Signal Processing
  • Biomedical Engineering
  • Computer Vision and Pattern Recognition
  • Health Informatics

Fingerprint Dive into the research topics of 'Autofluorescence Bronchoscopy Video Analysis for Lesion Frame Detection'. Together they form a unique fingerprint.

Cite this