Automated graph grammar generation for engineering design with frequent pattern mining

Shraddha C. Sangelkar, Daniel A. McAdams

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Graph grammars, a technique for formulating new graphs based on a set of rules, is a very powerful tool for computational design synthesis. It is particularly suitable for discrete categorical data where principal component analysis is generally not applicable. Furthermore, this technique utilizes three different programs in conjunction with a design repository, which is opposed to traditional methods that require experts to empirically derive graph grammars. This technique can be separated into three steps. These steps are the creation of the input, graph data mining, and interpretation of the output with the intention of these steps being to automate or assist an expert with the process of extracting engineering graph grammars. Graph grammars that can then serve as guidelines during concept generation. The results of this paper show that this technique is very applicable to computational design synthesis by testing only a small number of products and still producing tangible results that coincide with empirically derived graphs. Fifty electromechanical products from the design repository are used in this study. When comparing, the machine generated grammar rules with expert derived grammar rules, it can be seen that only 14% cannot be developed, 58% cannot be mined with the current setup and 28% were mined with the current set up. However, it is important to keep in mind a few considerations. Specifically, the technique does not replace the expert. Instead, the technique acts as more of an aid than a replacement. Also, while this technique has great potential in regards to computational design synthesis, it is limited to the products in the design repository and the current implementation of the aforementioned programs. Despite these minor considerations, this work proposes application of graph data mining to derive engineering grammars.

Original languageEnglish (US)
Title of host publication43rd Design Automation Conference
PublisherAmerican Society of Mechanical Engineers (ASME)
ISBN (Electronic)9780791858127
DOIs
StatePublished - Jan 1 2017
EventASME 2017 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, IDETC/CIE 2017 - Cleveland, United States
Duration: Aug 6 2017Aug 9 2017

Publication series

NameProceedings of the ASME Design Engineering Technical Conference
Volume2A-2017

Other

OtherASME 2017 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, IDETC/CIE 2017
CountryUnited States
CityCleveland
Period8/6/178/9/17

All Science Journal Classification (ASJC) codes

  • Mechanical Engineering
  • Computer Graphics and Computer-Aided Design
  • Computer Science Applications
  • Modeling and Simulation

Fingerprint Dive into the research topics of 'Automated graph grammar generation for engineering design with frequent pattern mining'. Together they form a unique fingerprint.

  • Cite this

    Sangelkar, S. C., & McAdams, D. A. (2017). Automated graph grammar generation for engineering design with frequent pattern mining. In 43rd Design Automation Conference (Proceedings of the ASME Design Engineering Technical Conference; Vol. 2A-2017). American Society of Mechanical Engineers (ASME). https://doi.org/10.1115/DETC2017-67520