TY - JOUR

T1 - Bôcher contractions of conformally superintegrable Laplace equations

AU - Kalnins, Ernest G.

AU - Miller, Willard

AU - Subag, Eyal

N1 - Funding Information:
This work was partially supported by a grant from the Simons Foundation (# 208754 to Willard Miller Jr).
Publisher Copyright:
© 2016, Institute of Mathematics. All rights reserved.

PY - 2016/4/19

Y1 - 2016/4/19

N2 - The explicit solvability of quantum superintegrable systems is due to symmetry, but the symmetry is often “hidden”. The symmetry generators of 2nd order superintegrable systems in 2 dimensions close under commutation to define quadratic algebras, a generalization of Lie algebras. Distinct systems on constant curvature spaces are related by geometric limits, induced by generalized Inönü–Wigner Lie algebra contractions of the symmetry algebras of the underlying spaces. These have physical/geometric implications, such as the Askey scheme for hypergeometric orthogonal polynomials. However, the limits have no satisfactory Lie algebra contraction interpretations for underlying spaces with 1- or 0-dimensional Lie algebras. We show that these systems can be best understood by transforming them to Laplace conformally superintegrable systems, with flat space conformal symmetry group SO(4, ℂ), and using ideas introduced in the 1894 thesis of Bôcher to study separable solutions of the wave equation in terms of roots of quadratic forms. We show that Bôcher’s prescription for coalescing roots of these forms induces contractions of the conformal algebra so(4, ℂ) to itself and yields a mechanism for classifying all Helmholtz superintegrable systems and their limits. In the paperActa Polytechnica, to appear, arXiv:1510.09067], we announced our main findings. This paper provides the proofs and more details.

AB - The explicit solvability of quantum superintegrable systems is due to symmetry, but the symmetry is often “hidden”. The symmetry generators of 2nd order superintegrable systems in 2 dimensions close under commutation to define quadratic algebras, a generalization of Lie algebras. Distinct systems on constant curvature spaces are related by geometric limits, induced by generalized Inönü–Wigner Lie algebra contractions of the symmetry algebras of the underlying spaces. These have physical/geometric implications, such as the Askey scheme for hypergeometric orthogonal polynomials. However, the limits have no satisfactory Lie algebra contraction interpretations for underlying spaces with 1- or 0-dimensional Lie algebras. We show that these systems can be best understood by transforming them to Laplace conformally superintegrable systems, with flat space conformal symmetry group SO(4, ℂ), and using ideas introduced in the 1894 thesis of Bôcher to study separable solutions of the wave equation in terms of roots of quadratic forms. We show that Bôcher’s prescription for coalescing roots of these forms induces contractions of the conformal algebra so(4, ℂ) to itself and yields a mechanism for classifying all Helmholtz superintegrable systems and their limits. In the paperActa Polytechnica, to appear, arXiv:1510.09067], we announced our main findings. This paper provides the proofs and more details.

UR - http://www.scopus.com/inward/record.url?scp=84964809824&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84964809824&partnerID=8YFLogxK

U2 - 10.3842/SIGMA.2016.038

DO - 10.3842/SIGMA.2016.038

M3 - Article

AN - SCOPUS:84964809824

SN - 1815-0659

VL - 12

JO - Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)

JF - Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)

M1 - 038

ER -