TY - JOUR
T1 - Bark decomposition in white oak soil outperforms eastern hemlock soil, while bark type leads to consistent changes in soil microbial composition
AU - Malik, Rondy J.
AU - Trexler, Ryan V.
AU - Eissenstat, David M.
AU - Bell, Terrence H.
N1 - Funding Information:
College of Agricultural Sciences and Huck Institutes of Life Sciences – Ecology Program. Special thanks to Mary Ann Bruns, Armen Kemanian, Jason Kaye, Alan H. Taylor and David Munoz for helpful discussions. This work was supported by the USDA National Institute of Food and Hatch Appropriations under Project #PEN04651 and Accession #1016233 and #PEN04591, Accession #1006803. The field work was conducted in Penn State's Stone Valley Forest, which is supported and managed by the Penn State's Forestland Management Office in the College of Agricultural Sciences and facilitated by National Science Foundation Critical Zone Observatory program grants to C. Duffy (EAR 07‐25019) and S. Brantley (EAR 12‐39285, EAR 13‐31726). Financial support was also provided by Penn State's Button Waller Fellowship, and National Science Foundation PRFB Award #1907242. Special thanks to Laurie E. Likoff of infobase learning for granting permission to re-use illustrations of eastern hemlock and white oak. Also, thank you to reviewer 1 for helping improve this manuscript by suggesting addition statistical approaches for hypothesis testing.
Publisher Copyright:
© 2020, The Author(s).
PY - 2020/10/1
Y1 - 2020/10/1
N2 - Bark decomposition is an underexamined component of soil carbon cycling and soil community assembly. Numerous studies have shown faster decomposition of leaf litter in “home” environments (i.e. within soil adjacent to the plant that produced the leaves), suggesting potential legacy effects from previous deposition of similar litter. This is expected to occur through, in part, accumulation of microorganisms that metabolize substrates the litter provides. Whether a similar “home-field advantage” (HFA) exists for bark decomposition is unknown, but this dynamic may differ because annual bark deposits to soil are minimal relative to leaf deposits. We hypothesized that (1) as with leaf litter, bark will be better decomposed near to the tree from which it was collected, and (2) that decomposing bark can initiate change in soil microbial composition. To test these hypotheses, we used a full factorial design that included two bark types (collected from eastern hemlock, Tsuga canadensis, and white oak, Quercus alba) and two soil types (‘home’ and ‘away’) within a temperate mixed hardwood forest at the Shale Hills Catchment in central Pennsylvania, USA. Bark was excised from 25 replicates of each tree type, buried in either home or away soil, and incubated belowground from July 2017 to June 2018. Decomposition was assessed through proportionate mass loss over time, while microbial composition in the bark and adjacent soil was assessed through high-throughput sequencing of 16S rRNA gene and fungal ITS fragments. Overall, bark degraded faster in white oak soils, and there was also an effect of bark type on decomposition. Although white oak bark decomposed more quickly in its home environment, this could be due to either soil conditioning or inherent differences in the soils in which each species grows. Soil microbial assemblages also sorted according to bark type rather than soil type, suggesting that bark strongly influences the composition of nearby microorganisms during decomposition. Our results suggest that both bark type and soil type are important factors during bark decomposition, but our findings suggest no clear evidence for HFA.
AB - Bark decomposition is an underexamined component of soil carbon cycling and soil community assembly. Numerous studies have shown faster decomposition of leaf litter in “home” environments (i.e. within soil adjacent to the plant that produced the leaves), suggesting potential legacy effects from previous deposition of similar litter. This is expected to occur through, in part, accumulation of microorganisms that metabolize substrates the litter provides. Whether a similar “home-field advantage” (HFA) exists for bark decomposition is unknown, but this dynamic may differ because annual bark deposits to soil are minimal relative to leaf deposits. We hypothesized that (1) as with leaf litter, bark will be better decomposed near to the tree from which it was collected, and (2) that decomposing bark can initiate change in soil microbial composition. To test these hypotheses, we used a full factorial design that included two bark types (collected from eastern hemlock, Tsuga canadensis, and white oak, Quercus alba) and two soil types (‘home’ and ‘away’) within a temperate mixed hardwood forest at the Shale Hills Catchment in central Pennsylvania, USA. Bark was excised from 25 replicates of each tree type, buried in either home or away soil, and incubated belowground from July 2017 to June 2018. Decomposition was assessed through proportionate mass loss over time, while microbial composition in the bark and adjacent soil was assessed through high-throughput sequencing of 16S rRNA gene and fungal ITS fragments. Overall, bark degraded faster in white oak soils, and there was also an effect of bark type on decomposition. Although white oak bark decomposed more quickly in its home environment, this could be due to either soil conditioning or inherent differences in the soils in which each species grows. Soil microbial assemblages also sorted according to bark type rather than soil type, suggesting that bark strongly influences the composition of nearby microorganisms during decomposition. Our results suggest that both bark type and soil type are important factors during bark decomposition, but our findings suggest no clear evidence for HFA.
UR - http://www.scopus.com/inward/record.url?scp=85091152759&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85091152759&partnerID=8YFLogxK
U2 - 10.1007/s10533-020-00701-7
DO - 10.1007/s10533-020-00701-7
M3 - Article
AN - SCOPUS:85091152759
VL - 150
SP - 329
EP - 343
JO - Biogeochemistry
JF - Biogeochemistry
SN - 0168-2563
IS - 3
ER -