Basalt and olivine dissolution under cold, salty, and acidic conditions: What can we learn about recent aqueous weathering on Mars?

E. M. Hausrath, S. L. Brantley

Research output: Contribution to journalArticlepeer-review

34 Scopus citations

Abstract

To test which variables may be important for weathering on Mars, the effects of temperature (22°C, 6°C, and -19°C), high ionic strength, and oxygen concentrations were investigated in batch dissolution experiments containing forsterite, fayalite, and basalt glass. CaCl2-NaCl-H 2O brine can remain liquid to temperatures of -55°C and thus may be liquid in the cold, dry climate that currently characterizes Mars. To understand weathering under such conditions, dissolution rates were measured in experiments in distilled water with and without CaCl2 and NaCl. As observed by others, dissolution rates increased with temperature, and only fayalite dissolution was significantly affected by the presence or absence of oxygen. Enhanced fayalite dissolution under anoxic conditions suggests that Fe-rich olivine would dissolve more rapidly than Mg-rich olivine on Mars. Dissolution in the two most dilute experimental solutions (deionized water and CaCl2-NaCl-H2O solution of ionic strength = 0.7 m) were the same within uncertainty, but apparent dissolution rate constants in CaCl2-NaCl-H2O brines were significantly slower. Steady silica concentrations are decreased in the brines, consistent with other work, and precipitation rates of silica decrease with decreasing temperatures. These results suggest that enhanced silica precipitation could be an indicator of high ionic strength solutions on Mars. Consistent with these observations, weathering of basalt has been observed to sometimes be accompanied by precipitated layers of silica in cold, dry environments on Earth. If dissolution on Mars occurs or occurred under conditions similar to our experiments, cation leaching would be expected to be accompanied by silica precipitates on weathering surfaces.

Original languageEnglish (US)
Article numberE12001
JournalJournal of Geophysical Research E: Planets
Volume115
Issue number12
DOIs
StatePublished - 2010

All Science Journal Classification (ASJC) codes

  • Geophysics
  • Forestry
  • Oceanography
  • Aquatic Science
  • Ecology
  • Water Science and Technology
  • Soil Science
  • Geochemistry and Petrology
  • Earth-Surface Processes
  • Atmospheric Science
  • Earth and Planetary Sciences (miscellaneous)
  • Space and Planetary Science
  • Palaeontology

Fingerprint Dive into the research topics of 'Basalt and olivine dissolution under cold, salty, and acidic conditions: What can we learn about recent aqueous weathering on Mars?'. Together they form a unique fingerprint.

Cite this