Bayesian Cross Hedging: An Example From the Soybean Market

F. Douglas Foster, Charles H. Whiteman

Research output: Contribution to journalArticle

6 Citations (Scopus)

Abstract

Following Lence and Hayes (1994a), we study the problem faced by an Iowa farmer who wishes to hedge a soybean harvest using Chicago futures contracts. A time-series model for spot and futures prices is postulated, and numerical Bayesian procedures are used to calculate predictive densities and optimal hedges. The numerical procedures extend earlier analytical work, and easily accommodate alternative views about specification (levels vs. logarithms, trends vs. no trends, etc.), uncertainty about parameterisations (estimation risk), as well as other non-sample information (the likely size of the difference between spot prices in Iowa and Chicago, the tendency of the basis to be large in the spring, the shrinking of the basis as expiration of the future looms, etc.).

Original languageEnglish (US)
Pages (from-to)95-122
Number of pages28
JournalAustralian Journal of Management
Volume27
Issue number2
DOIs
StatePublished - Jan 1 2002

Fingerprint

Spot price
Soybean
Hedge
Cross-hedging
Loom
Futures contracts
Uncertainty
Farmers
Estimation risk
Time series models
Harvest
Predictive density
Futures prices

All Science Journal Classification (ASJC) codes

  • Business, Management and Accounting(all)

Cite this

@article{4cd7a2423290428f97e91d86e59cf66c,
title = "Bayesian Cross Hedging: An Example From the Soybean Market",
abstract = "Following Lence and Hayes (1994a), we study the problem faced by an Iowa farmer who wishes to hedge a soybean harvest using Chicago futures contracts. A time-series model for spot and futures prices is postulated, and numerical Bayesian procedures are used to calculate predictive densities and optimal hedges. The numerical procedures extend earlier analytical work, and easily accommodate alternative views about specification (levels vs. logarithms, trends vs. no trends, etc.), uncertainty about parameterisations (estimation risk), as well as other non-sample information (the likely size of the difference between spot prices in Iowa and Chicago, the tendency of the basis to be large in the spring, the shrinking of the basis as expiration of the future looms, etc.).",
author = "Foster, {F. Douglas} and Whiteman, {Charles H.}",
year = "2002",
month = "1",
day = "1",
doi = "10.1177/031289620202700201",
language = "English (US)",
volume = "27",
pages = "95--122",
journal = "Australian Journal of Management",
issn = "0312-8962",
publisher = "SAGE Publications Ltd",
number = "2",

}

Bayesian Cross Hedging : An Example From the Soybean Market. / Foster, F. Douglas; Whiteman, Charles H.

In: Australian Journal of Management, Vol. 27, No. 2, 01.01.2002, p. 95-122.

Research output: Contribution to journalArticle

TY - JOUR

T1 - Bayesian Cross Hedging

T2 - An Example From the Soybean Market

AU - Foster, F. Douglas

AU - Whiteman, Charles H.

PY - 2002/1/1

Y1 - 2002/1/1

N2 - Following Lence and Hayes (1994a), we study the problem faced by an Iowa farmer who wishes to hedge a soybean harvest using Chicago futures contracts. A time-series model for spot and futures prices is postulated, and numerical Bayesian procedures are used to calculate predictive densities and optimal hedges. The numerical procedures extend earlier analytical work, and easily accommodate alternative views about specification (levels vs. logarithms, trends vs. no trends, etc.), uncertainty about parameterisations (estimation risk), as well as other non-sample information (the likely size of the difference between spot prices in Iowa and Chicago, the tendency of the basis to be large in the spring, the shrinking of the basis as expiration of the future looms, etc.).

AB - Following Lence and Hayes (1994a), we study the problem faced by an Iowa farmer who wishes to hedge a soybean harvest using Chicago futures contracts. A time-series model for spot and futures prices is postulated, and numerical Bayesian procedures are used to calculate predictive densities and optimal hedges. The numerical procedures extend earlier analytical work, and easily accommodate alternative views about specification (levels vs. logarithms, trends vs. no trends, etc.), uncertainty about parameterisations (estimation risk), as well as other non-sample information (the likely size of the difference between spot prices in Iowa and Chicago, the tendency of the basis to be large in the spring, the shrinking of the basis as expiration of the future looms, etc.).

UR - http://www.scopus.com/inward/record.url?scp=84996207392&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84996207392&partnerID=8YFLogxK

U2 - 10.1177/031289620202700201

DO - 10.1177/031289620202700201

M3 - Article

AN - SCOPUS:84996207392

VL - 27

SP - 95

EP - 122

JO - Australian Journal of Management

JF - Australian Journal of Management

SN - 0312-8962

IS - 2

ER -