TY - JOUR
T1 - Bimodal polymorphic nanodomains in ferroelectric films for giant energy storage
AU - Ren, Yuhang
AU - Cheng, Hongbo
AU - Ouyang, Jun
AU - Kurt, Onur
AU - Wang, Jianjun
AU - Zhang, Qinghua
AU - Zhao, Yuyao
AU - Gu, Lin
AU - Chen, Long Qing
N1 - Funding Information:
The work at Hunter College was supported by the Air Force Office of Scientific Research (Grant No. FA9550-20-1-0388 ) and PSC-CUNY (Grant No.63728-00 51). J. Ouyang acknowledges the partial financial support from the National Natural Science Foundation of China (Project Grant nos. 51772175 ), and the Jinan City Science and Technology Bureau (Grant No. 2021GXRC055). H. Cheng acknowledges the partial support from the Jiangsu Province NSFC (Grant No. BK20180764). J. J. Wang and L. Q. Chen acknowledge the partial financial support for this effort from the Donald W. Hamer Foundation for the Hamer Professorship at Penn State.
Publisher Copyright:
© 2022 The Author(s)
PY - 2022/6
Y1 - 2022/6
N2 - Enhanced functional responses of ferroelectrics have often been achieved by complex compositional design of a morphotropic or polymorphic phase boundary. Here, we observe a pseudo-linear, ultra-slim polarization-electric field (P-E) hysteresis loop in simple composition, lead-free Ba(Zr,Ti)O3 of up to μm-thick. It features a low remnant polarization and a high maximum polarization after a delayed saturation process with a field-insensitive, thickness-scalable high energy efficiency of ∼90%. This giant energy storage performance is attributed to the self-assembled, bimodal polymorphic nanodomains consisting of two sets of coherent polymorphic nanodomains. The first set of domains has the best-matched, low index {110} interface. They manifest themselves as “entangled nanophases” and dominate in thinner or annealed films. The 2nd set of domains with a high-index {114} interface and an in-plane anisotropy leads to the largest reduction in bulk elastic energy. These domains show as “segregated nanophases” and prevail in as-grown thick films. The presence of multi-polar states in both sets of nanodomains helps reduce the remnant polarization and delay the polarization saturation. Furthermore, the segregated tetragonal phase in-plane nanodomains lead to a larger maximum polarization under a high poling field. Strain engineering of such nanodomain structures provides a promising alternative to chemical compositional design, for the optimization of dielectric thin films used in capacitive energy storage applications.
AB - Enhanced functional responses of ferroelectrics have often been achieved by complex compositional design of a morphotropic or polymorphic phase boundary. Here, we observe a pseudo-linear, ultra-slim polarization-electric field (P-E) hysteresis loop in simple composition, lead-free Ba(Zr,Ti)O3 of up to μm-thick. It features a low remnant polarization and a high maximum polarization after a delayed saturation process with a field-insensitive, thickness-scalable high energy efficiency of ∼90%. This giant energy storage performance is attributed to the self-assembled, bimodal polymorphic nanodomains consisting of two sets of coherent polymorphic nanodomains. The first set of domains has the best-matched, low index {110} interface. They manifest themselves as “entangled nanophases” and dominate in thinner or annealed films. The 2nd set of domains with a high-index {114} interface and an in-plane anisotropy leads to the largest reduction in bulk elastic energy. These domains show as “segregated nanophases” and prevail in as-grown thick films. The presence of multi-polar states in both sets of nanodomains helps reduce the remnant polarization and delay the polarization saturation. Furthermore, the segregated tetragonal phase in-plane nanodomains lead to a larger maximum polarization under a high poling field. Strain engineering of such nanodomain structures provides a promising alternative to chemical compositional design, for the optimization of dielectric thin films used in capacitive energy storage applications.
UR - http://www.scopus.com/inward/record.url?scp=85127204084&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85127204084&partnerID=8YFLogxK
U2 - 10.1016/j.ensm.2022.03.027
DO - 10.1016/j.ensm.2022.03.027
M3 - Article
AN - SCOPUS:85127204084
SN - 2405-8297
VL - 48
SP - 306
EP - 313
JO - Energy Storage Materials
JF - Energy Storage Materials
ER -