Binary miscible blends of poly(methyl methacrylate)/poly(α-methyl styrene-co-acrylonitrile): I. Rheological behavior

Samy Madbouly, Toshiaki Ougizawa

Research output: Contribution to journalArticle

19 Citations (Scopus)

Abstract

Viscoelastic properties of poly(α-methylstyrene-co-acrylonitrile) and poly-(methyl methacrylate) blends have been systematically investigated below and above the lower critical solution phase-separation temperatures. In the one-phase regime, the viscoelastic characteristic parameters of the blends, such as zero shear viscosity, η0, and entanglement plateau modulus, GN0, were found to be composition dependent. A negative deviation of the composition dependence of GN0 from the linear-mixing rule was detected indicating that the total number of entanglement points per unit volume in the blends is smaller than the sum of those in the two constituent pure components. Similar behavior was also seen in the composition dependence of η0. The linear-viscoelastic properties of the blends were found to be greatly changed by phase separation in the two-phase regime. The change in the viscoelastic properties was clearly observed in the failing of the Williams-Landel-Ferry (WLF) superposition principle and sudden changes in the slopes of the temperature ramps of some of viscoelastic material functions (G′, G″, η0) as well as an appearance of a second plateau at a small value of frequency in the classical frequency dependence of the complex dynamic viscosity (η*). This large change in the linear-viscoelastic properties might be attributed to an additional contribution of concentration fluctuations to the material functions at the phase-separation temperatures. The phase diagram of the blends was also estimated rheologically and the result was in good agreement with the cloud point measurements obtained visually under quiescent condition at a heating rate of 1°C/min.

Original languageEnglish (US)
Pages (from-to)255-269
Number of pages15
JournalJournal of Macromolecular Science - Physics
Volume41 B
Issue number2
DOIs
StatePublished - Mar 1 2002

Fingerprint

Acrylonitrile
Styrene
acrylonitriles
Polymethyl Methacrylate
Polymethyl methacrylates
polymethyl methacrylate
styrenes
Phase separation
Chemical analysis
Shear viscosity
plateaus
Heating rate
Temperature
Phase diagrams
viscosity
Viscosity
ramps
temperature
phase diagrams
slopes

All Science Journal Classification (ASJC) codes

  • Chemistry(all)
  • Condensed Matter Physics
  • Polymers and Plastics
  • Materials Chemistry

Cite this

@article{a5a4060782d34dc48c9a29094e43b9f7,
title = "Binary miscible blends of poly(methyl methacrylate)/poly(α-methyl styrene-co-acrylonitrile): I. Rheological behavior",
abstract = "Viscoelastic properties of poly(α-methylstyrene-co-acrylonitrile) and poly-(methyl methacrylate) blends have been systematically investigated below and above the lower critical solution phase-separation temperatures. In the one-phase regime, the viscoelastic characteristic parameters of the blends, such as zero shear viscosity, η0, and entanglement plateau modulus, GN0, were found to be composition dependent. A negative deviation of the composition dependence of GN0 from the linear-mixing rule was detected indicating that the total number of entanglement points per unit volume in the blends is smaller than the sum of those in the two constituent pure components. Similar behavior was also seen in the composition dependence of η0. The linear-viscoelastic properties of the blends were found to be greatly changed by phase separation in the two-phase regime. The change in the viscoelastic properties was clearly observed in the failing of the Williams-Landel-Ferry (WLF) superposition principle and sudden changes in the slopes of the temperature ramps of some of viscoelastic material functions (G′, G″, η0) as well as an appearance of a second plateau at a small value of frequency in the classical frequency dependence of the complex dynamic viscosity (η*). This large change in the linear-viscoelastic properties might be attributed to an additional contribution of concentration fluctuations to the material functions at the phase-separation temperatures. The phase diagram of the blends was also estimated rheologically and the result was in good agreement with the cloud point measurements obtained visually under quiescent condition at a heating rate of 1°C/min.",
author = "Samy Madbouly and Toshiaki Ougizawa",
year = "2002",
month = "3",
day = "1",
doi = "10.1081/MB-120003084",
language = "English (US)",
volume = "41 B",
pages = "255--269",
journal = "Journal of Macromolecular Science, Part B",
issn = "0022-2348",
publisher = "Taylor and Francis Ltd.",
number = "2",

}

Binary miscible blends of poly(methyl methacrylate)/poly(α-methyl styrene-co-acrylonitrile) : I. Rheological behavior. / Madbouly, Samy; Ougizawa, Toshiaki.

In: Journal of Macromolecular Science - Physics, Vol. 41 B, No. 2, 01.03.2002, p. 255-269.

Research output: Contribution to journalArticle

TY - JOUR

T1 - Binary miscible blends of poly(methyl methacrylate)/poly(α-methyl styrene-co-acrylonitrile)

T2 - I. Rheological behavior

AU - Madbouly, Samy

AU - Ougizawa, Toshiaki

PY - 2002/3/1

Y1 - 2002/3/1

N2 - Viscoelastic properties of poly(α-methylstyrene-co-acrylonitrile) and poly-(methyl methacrylate) blends have been systematically investigated below and above the lower critical solution phase-separation temperatures. In the one-phase regime, the viscoelastic characteristic parameters of the blends, such as zero shear viscosity, η0, and entanglement plateau modulus, GN0, were found to be composition dependent. A negative deviation of the composition dependence of GN0 from the linear-mixing rule was detected indicating that the total number of entanglement points per unit volume in the blends is smaller than the sum of those in the two constituent pure components. Similar behavior was also seen in the composition dependence of η0. The linear-viscoelastic properties of the blends were found to be greatly changed by phase separation in the two-phase regime. The change in the viscoelastic properties was clearly observed in the failing of the Williams-Landel-Ferry (WLF) superposition principle and sudden changes in the slopes of the temperature ramps of some of viscoelastic material functions (G′, G″, η0) as well as an appearance of a second plateau at a small value of frequency in the classical frequency dependence of the complex dynamic viscosity (η*). This large change in the linear-viscoelastic properties might be attributed to an additional contribution of concentration fluctuations to the material functions at the phase-separation temperatures. The phase diagram of the blends was also estimated rheologically and the result was in good agreement with the cloud point measurements obtained visually under quiescent condition at a heating rate of 1°C/min.

AB - Viscoelastic properties of poly(α-methylstyrene-co-acrylonitrile) and poly-(methyl methacrylate) blends have been systematically investigated below and above the lower critical solution phase-separation temperatures. In the one-phase regime, the viscoelastic characteristic parameters of the blends, such as zero shear viscosity, η0, and entanglement plateau modulus, GN0, were found to be composition dependent. A negative deviation of the composition dependence of GN0 from the linear-mixing rule was detected indicating that the total number of entanglement points per unit volume in the blends is smaller than the sum of those in the two constituent pure components. Similar behavior was also seen in the composition dependence of η0. The linear-viscoelastic properties of the blends were found to be greatly changed by phase separation in the two-phase regime. The change in the viscoelastic properties was clearly observed in the failing of the Williams-Landel-Ferry (WLF) superposition principle and sudden changes in the slopes of the temperature ramps of some of viscoelastic material functions (G′, G″, η0) as well as an appearance of a second plateau at a small value of frequency in the classical frequency dependence of the complex dynamic viscosity (η*). This large change in the linear-viscoelastic properties might be attributed to an additional contribution of concentration fluctuations to the material functions at the phase-separation temperatures. The phase diagram of the blends was also estimated rheologically and the result was in good agreement with the cloud point measurements obtained visually under quiescent condition at a heating rate of 1°C/min.

UR - http://www.scopus.com/inward/record.url?scp=0036494212&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0036494212&partnerID=8YFLogxK

U2 - 10.1081/MB-120003084

DO - 10.1081/MB-120003084

M3 - Article

AN - SCOPUS:0036494212

VL - 41 B

SP - 255

EP - 269

JO - Journal of Macromolecular Science, Part B

JF - Journal of Macromolecular Science, Part B

SN - 0022-2348

IS - 2

ER -