Binary neutron star merger simulations with a calibrated turbulence model

Research output: Contribution to journalArticlepeer-review

3 Scopus citations

Abstract

Magnetohydrodynamic (MHD) turbulence in neutron star (NS) merger remnants can impact their evolution and multi-messenger signatures, complicating the interpretation of present and future observations. Due to the high Reynolds numbers and the large computational costs of numerical relativity simulations, resolving all the relevant scales of the turbulence will be impossible for the foreseeable future. Here, we adopt a method to include subgrid-scale turbulence in moderate resolution simulations by extending the large-eddy simulation (LES) method to general relativity (GR). We calibrate our subgrid turbulence model with results from very-high-resolution GRMHD simulations, and we use it to perform NS merger simulations and study the impact of turbulence. We find that turbulence has a quantitative, but not qualitative, impact on the evolution of NS merger remnants, on their gravitational wave signatures, and on the outflows generated in binary NS mergers. Our approach provides a viable path to quantify uncertainties due to turbulence in NS mergers.

Original languageEnglish (US)
Article number1249
JournalSymmetry
Volume12
Issue number8
DOIs
StatePublished - Aug 2020

All Science Journal Classification (ASJC) codes

  • Computer Science (miscellaneous)
  • Chemistry (miscellaneous)
  • Mathematics(all)
  • Physics and Astronomy (miscellaneous)

Fingerprint Dive into the research topics of 'Binary neutron star merger simulations with a calibrated turbulence model'. Together they form a unique fingerprint.

Cite this