Binary partitions revisited

Øystein J. Rødseth, James Allen Sellers

Research output: Contribution to journalArticle

7 Citations (Scopus)

Abstract

The restricted binary partition function bk(n) enumerates the number of ways to represent n as n = 2a0 + 2a1 + ⋯ + 2aj with 0 ≤ a0 ≤ a1 ≤ ⋯ ≤ aj < k. We study the question of how large a power of 2 divides the difference bk(2r+2n)-bk-2(2rn) for fixed k ≥ 3, r ≥ 1, and all n ≥ 1.

Original languageEnglish (US)
Pages (from-to)33-45
Number of pages13
JournalJournal of Combinatorial Theory. Series A
Volume98
Issue number1
DOIs
StatePublished - Jan 1 2002

Fingerprint

Partition Function
Divides
Partition
Binary

All Science Journal Classification (ASJC) codes

  • Theoretical Computer Science
  • Discrete Mathematics and Combinatorics
  • Computational Theory and Mathematics

Cite this

Rødseth, Øystein J. ; Sellers, James Allen. / Binary partitions revisited. In: Journal of Combinatorial Theory. Series A. 2002 ; Vol. 98, No. 1. pp. 33-45.
@article{f33d402fe5ae4a5d8c25a6b8ab53daa5,
title = "Binary partitions revisited",
abstract = "The restricted binary partition function bk(n) enumerates the number of ways to represent n as n = 2a0 + 2a1 + ⋯ + 2aj with 0 ≤ a0 ≤ a1 ≤ ⋯ ≤ aj < k. We study the question of how large a power of 2 divides the difference bk(2r+2n)-bk-2(2rn) for fixed k ≥ 3, r ≥ 1, and all n ≥ 1.",
author = "R{\o}dseth, {{\O}ystein J.} and Sellers, {James Allen}",
year = "2002",
month = "1",
day = "1",
doi = "10.1006/jcta.2001.3223",
language = "English (US)",
volume = "98",
pages = "33--45",
journal = "Journal of Combinatorial Theory - Series A",
issn = "0097-3165",
publisher = "Academic Press Inc.",
number = "1",

}

Binary partitions revisited. / Rødseth, Øystein J.; Sellers, James Allen.

In: Journal of Combinatorial Theory. Series A, Vol. 98, No. 1, 01.01.2002, p. 33-45.

Research output: Contribution to journalArticle

TY - JOUR

T1 - Binary partitions revisited

AU - Rødseth, Øystein J.

AU - Sellers, James Allen

PY - 2002/1/1

Y1 - 2002/1/1

N2 - The restricted binary partition function bk(n) enumerates the number of ways to represent n as n = 2a0 + 2a1 + ⋯ + 2aj with 0 ≤ a0 ≤ a1 ≤ ⋯ ≤ aj < k. We study the question of how large a power of 2 divides the difference bk(2r+2n)-bk-2(2rn) for fixed k ≥ 3, r ≥ 1, and all n ≥ 1.

AB - The restricted binary partition function bk(n) enumerates the number of ways to represent n as n = 2a0 + 2a1 + ⋯ + 2aj with 0 ≤ a0 ≤ a1 ≤ ⋯ ≤ aj < k. We study the question of how large a power of 2 divides the difference bk(2r+2n)-bk-2(2rn) for fixed k ≥ 3, r ≥ 1, and all n ≥ 1.

UR - http://www.scopus.com/inward/record.url?scp=17144462879&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=17144462879&partnerID=8YFLogxK

U2 - 10.1006/jcta.2001.3223

DO - 10.1006/jcta.2001.3223

M3 - Article

VL - 98

SP - 33

EP - 45

JO - Journal of Combinatorial Theory - Series A

JF - Journal of Combinatorial Theory - Series A

SN - 0097-3165

IS - 1

ER -