Binder Jetting: A Novel Solid Oxide Fuel-Cell Fabrication Process and Evaluation

Guhaprasanna Manogharan, Meshack Kioko, Clovis Linkous

Research output: Contribution to journalArticlepeer-review

20 Scopus citations

Abstract

With an ever-growing concern to find a more efficient and less polluting means of producing electricity, fuel cells have constantly been of great interest. Fuel cells electrochemically convert chemical energy directly into electricity and heat without resorting to combustion/mechanical cycling. This article studies the solid oxide fuel cell (SOFC), which is a high-temperature (100°C to 1000°C) ceramic cell made from all solid-state components and can operate under a wide range of fuel sources such as hydrogen, methanol, gasoline, diesel, and gasified coal. Traditionally, SOFCs are fabricated using processes such as tape casting, calendaring, extrusion, and warm pressing for substrate support, followed by screen printing, slurry coating, spray techniques, vapor deposition, and sputter techniques, which have limited control in substrate microstructure. In this article, the feasibility of engineering the porosity and configuration of an SOFC via an additive manufacturing (AM) method known as binder jet printing was explored. The anode, cathode and oxygen ion-conducting electrolyte layers were fabricated through AM sequentially as a complete fuel cell unit. The cell performance was measured in two modes: (I) as an electrolytic oxygen pump and (II) as a galvanic electricity generator using hydrogen gas as the fuel. An analysis on influence of porosity was performed through SEM studies and permeability testing. An additional study on fuel cell material composition was conducted to verify the effects of binder jetting through SEM–EDS. Electrical discharge of the AM fabricated SOFC and nonlinearity of permeability tests show that, with additional work, the porosity of the cell can be modified for optimal performance at operating flow and temperature conditions.

Original languageEnglish (US)
Pages (from-to)660-667
Number of pages8
JournalJOM
Volume67
Issue number3
DOIs
StatePublished - Jan 1 2015

All Science Journal Classification (ASJC) codes

  • Materials Science(all)
  • Engineering(all)

Fingerprint Dive into the research topics of 'Binder Jetting: A Novel Solid Oxide Fuel-Cell Fabrication Process and Evaluation'. Together they form a unique fingerprint.

Cite this