Bio-inspired dental multilayers: Effects of layer architecture on the contact-induced deformation

J. Du, X. Niu, N. Rahbar, W. Soboyejo

Research output: Contribution to journalArticle

25 Scopus citations

Abstract

The ceramic crown structures under occlusal contact are idealized as flat multilayered structures that are deformed under Hertzian contact loading. Those multilayers consist of a crown-like ceramic top layer, an adhesive layer and the dentin-like substrate. Bio-inspired design of the adhesive layer proposed functionally graded multilayers (FGM) that mimic the dentin-enamel junction in natural teeth. This paper examines the effects of FGM layer architecture on the contact-induced deformation of bio-inspired dental multilayers. Finite element modeling was used to explore the effects of thickness and architecture on the contact-induced stresses that are induced in bio-inspired dental multilayers. A layered nanocomposite structure was then fabricated by the sequential rolling of micro-scale nanocomposite materials with local moduli that increase from the side near the soft dentin-like polymer composite foundation to the side near the top ceramic layer. The loading rate dependence of the critical failure loads is shown to be well predicted by a slow crack growth model, which integrates the actual mechanical properties that are obtained from nanoindentation experiments.

Original languageEnglish (US)
Pages (from-to)5273-5279
Number of pages7
JournalActa Biomaterialia
Volume9
Issue number2
DOIs
StatePublished - Feb 1 2013

    Fingerprint

All Science Journal Classification (ASJC) codes

  • Biotechnology
  • Biomaterials
  • Biochemistry
  • Biomedical Engineering
  • Molecular Biology

Cite this