Biochemical Analysis of Fructose-1,6-bisphosphatase Import into Vacuole Import and Degradation Vesicles Reveals a Role for UBC1 in Vesicle Biogenesis

Hui Ling Shieh, Yong Chen, C. Randell Brown, Hui Ling Chiang

Research output: Contribution to journalArticlepeer-review

32 Scopus citations

Abstract

When Saccharomyces cerevisiae are shifted from medium containing poor carbon sources to medium containing fresh glucose, the key gluconeogenic enzyme fructose-1,6-bisphosphatase (FBPase) is imported into Vid (vacuole import and degradation) vesicles and then to the vacuole for degradation. Here, we show that FBPase import is independent of vacuole functions and proteasome degradation. However, FBPase import required the ubiquitin-conjugating enzyme Ubc1p. A strain containing a deletion of the UBC1 gene exhibited defective FBPase import. Furthermore, FBPase import was inhibited when cells overexpressed the K48P/K63R ubiquitin mutant that fails to form multiubiquitin chains. The defects in FBPase import seen for the Δubc1 and the K48R/K63R mutants were attributed to the Vid vesicle fraction. In the Aubc1 mutant, the level of the Vid vesicle-specific marker Vid24p was reduced in the vesicle fraction, suggesting that UBC1 is required for either Vid vesicle production or Vid24p binding to Vid vesicles. However, the K48P/K63R mutant did not prevent Vid24p binding to Vid vesicles, indicating that ubiquitin chain formation is dispensable for Vid24p binding to these structures. Our results support the findings that ubiquitin conjugation and ubiquitin chain formation play important roles in a number of cellular processes including organelle biogenesis.

Original languageEnglish (US)
Pages (from-to)10398-10406
Number of pages9
JournalJournal of Biological Chemistry
Volume276
Issue number13
DOIs
StatePublished - Mar 30 2001

All Science Journal Classification (ASJC) codes

  • Biochemistry
  • Molecular Biology
  • Cell Biology

Fingerprint Dive into the research topics of 'Biochemical Analysis of Fructose-1,6-bisphosphatase Import into Vacuole Import and Degradation Vesicles Reveals a Role for UBC1 in Vesicle Biogenesis'. Together they form a unique fingerprint.

Cite this