Biochemical characterization of Epstein-Barr virus nuclear antigen 3A and 3C proteins

Clare Sample, Bruce Parker

Research output: Contribution to journalArticle

22 Citations (Scopus)

Abstract

Among the viral proteins expressed in Epstein-Barr virus (EBV)-infected B cells are a family of nuclear proteins known as the Epstein-Barr virus nuclear antigen 3 (EBNA-3) proteins. Two of these, EBNA-3A and EBNA-3C, have an essential but uncharacterized role in the transformation of primary B calls by EBV. EBNA-3C increases expression of two genes likely to be important for B cell growth transformation by EBV, the B cell activation antigen CD21 and the EBV latent membrana protein-1. Since EBNA-3 proteins exhibit DNA-binding capability in crude protein extracts from EBV-transformed cell lines and EBNA-3C contains sequences homologous to a basic leucine zipper motif found in one class of mammalian transcription factors, it is likely that EBNA-3C functions as a transcriptional transactivator. In this paper, we have overexpressed EBNA-3A and -3C in the baculovirus-expression system. To determine whether the ability to bind to DNA is an intrinsic property of the EBNA-3 proteins, we have examined the ability of the recombinant protein to bind to DNA-cellulose. Unlike EBNA-3 proteins in lysates from EBV-transformed cells, neither recombinant protein exhibits significant DNA-binding capability as evidenced by the inability to bind to double-stranded DNA-cellulose. Since this difference in DNA binding could be a result of post-translational modifications, we have examined the phosphorylation status of the EBNA-3 proteins both in EBV-transformed cells and in infected insect cells. EBNA-3A and EBNA-3C were phosphorylated In both cell types. Therefore, if indeed these proteins function as transcriptional transactivators, they may bind to DNA via an indirect mechanism. The recombinant proteins will be Invaluable in the further clarification of the role of EBNA-3A and EBNA-3C in EBV-induced immortalization of B cells.

Original languageEnglish (US)
Article number71675
Pages (from-to)534-539
Number of pages6
JournalVirology
Volume205
Issue number2
DOIs
StatePublished - Jan 1 1994

Fingerprint

Epstein-Barr Virus Nuclear Antigens
Human Herpesvirus 4
Recombinant Proteins
Proteins
DNA
B-Lymphocytes
Trans-Activators
CD80 Antigens
Leucine Zippers
Transformed Cell Line
Baculoviridae
DNA-Binding Proteins
Viral Proteins
Post Translational Protein Processing
Sequence Homology
Nuclear Proteins
epstein-barr virus EBNA-3C
Complex Mixtures
Insects
Transcription Factors

All Science Journal Classification (ASJC) codes

  • Virology

Cite this

@article{4ad0cfeb96cb4965a245ba8484f88933,
title = "Biochemical characterization of Epstein-Barr virus nuclear antigen 3A and 3C proteins",
abstract = "Among the viral proteins expressed in Epstein-Barr virus (EBV)-infected B cells are a family of nuclear proteins known as the Epstein-Barr virus nuclear antigen 3 (EBNA-3) proteins. Two of these, EBNA-3A and EBNA-3C, have an essential but uncharacterized role in the transformation of primary B calls by EBV. EBNA-3C increases expression of two genes likely to be important for B cell growth transformation by EBV, the B cell activation antigen CD21 and the EBV latent membrana protein-1. Since EBNA-3 proteins exhibit DNA-binding capability in crude protein extracts from EBV-transformed cell lines and EBNA-3C contains sequences homologous to a basic leucine zipper motif found in one class of mammalian transcription factors, it is likely that EBNA-3C functions as a transcriptional transactivator. In this paper, we have overexpressed EBNA-3A and -3C in the baculovirus-expression system. To determine whether the ability to bind to DNA is an intrinsic property of the EBNA-3 proteins, we have examined the ability of the recombinant protein to bind to DNA-cellulose. Unlike EBNA-3 proteins in lysates from EBV-transformed cells, neither recombinant protein exhibits significant DNA-binding capability as evidenced by the inability to bind to double-stranded DNA-cellulose. Since this difference in DNA binding could be a result of post-translational modifications, we have examined the phosphorylation status of the EBNA-3 proteins both in EBV-transformed cells and in infected insect cells. EBNA-3A and EBNA-3C were phosphorylated In both cell types. Therefore, if indeed these proteins function as transcriptional transactivators, they may bind to DNA via an indirect mechanism. The recombinant proteins will be Invaluable in the further clarification of the role of EBNA-3A and EBNA-3C in EBV-induced immortalization of B cells.",
author = "Clare Sample and Bruce Parker",
year = "1994",
month = "1",
day = "1",
doi = "10.1006/viro.1994.1675",
language = "English (US)",
volume = "205",
pages = "534--539",
journal = "Virology",
issn = "0042-6822",
publisher = "Academic Press Inc.",
number = "2",

}

Biochemical characterization of Epstein-Barr virus nuclear antigen 3A and 3C proteins. / Sample, Clare; Parker, Bruce.

In: Virology, Vol. 205, No. 2, 71675, 01.01.1994, p. 534-539.

Research output: Contribution to journalArticle

TY - JOUR

T1 - Biochemical characterization of Epstein-Barr virus nuclear antigen 3A and 3C proteins

AU - Sample, Clare

AU - Parker, Bruce

PY - 1994/1/1

Y1 - 1994/1/1

N2 - Among the viral proteins expressed in Epstein-Barr virus (EBV)-infected B cells are a family of nuclear proteins known as the Epstein-Barr virus nuclear antigen 3 (EBNA-3) proteins. Two of these, EBNA-3A and EBNA-3C, have an essential but uncharacterized role in the transformation of primary B calls by EBV. EBNA-3C increases expression of two genes likely to be important for B cell growth transformation by EBV, the B cell activation antigen CD21 and the EBV latent membrana protein-1. Since EBNA-3 proteins exhibit DNA-binding capability in crude protein extracts from EBV-transformed cell lines and EBNA-3C contains sequences homologous to a basic leucine zipper motif found in one class of mammalian transcription factors, it is likely that EBNA-3C functions as a transcriptional transactivator. In this paper, we have overexpressed EBNA-3A and -3C in the baculovirus-expression system. To determine whether the ability to bind to DNA is an intrinsic property of the EBNA-3 proteins, we have examined the ability of the recombinant protein to bind to DNA-cellulose. Unlike EBNA-3 proteins in lysates from EBV-transformed cells, neither recombinant protein exhibits significant DNA-binding capability as evidenced by the inability to bind to double-stranded DNA-cellulose. Since this difference in DNA binding could be a result of post-translational modifications, we have examined the phosphorylation status of the EBNA-3 proteins both in EBV-transformed cells and in infected insect cells. EBNA-3A and EBNA-3C were phosphorylated In both cell types. Therefore, if indeed these proteins function as transcriptional transactivators, they may bind to DNA via an indirect mechanism. The recombinant proteins will be Invaluable in the further clarification of the role of EBNA-3A and EBNA-3C in EBV-induced immortalization of B cells.

AB - Among the viral proteins expressed in Epstein-Barr virus (EBV)-infected B cells are a family of nuclear proteins known as the Epstein-Barr virus nuclear antigen 3 (EBNA-3) proteins. Two of these, EBNA-3A and EBNA-3C, have an essential but uncharacterized role in the transformation of primary B calls by EBV. EBNA-3C increases expression of two genes likely to be important for B cell growth transformation by EBV, the B cell activation antigen CD21 and the EBV latent membrana protein-1. Since EBNA-3 proteins exhibit DNA-binding capability in crude protein extracts from EBV-transformed cell lines and EBNA-3C contains sequences homologous to a basic leucine zipper motif found in one class of mammalian transcription factors, it is likely that EBNA-3C functions as a transcriptional transactivator. In this paper, we have overexpressed EBNA-3A and -3C in the baculovirus-expression system. To determine whether the ability to bind to DNA is an intrinsic property of the EBNA-3 proteins, we have examined the ability of the recombinant protein to bind to DNA-cellulose. Unlike EBNA-3 proteins in lysates from EBV-transformed cells, neither recombinant protein exhibits significant DNA-binding capability as evidenced by the inability to bind to double-stranded DNA-cellulose. Since this difference in DNA binding could be a result of post-translational modifications, we have examined the phosphorylation status of the EBNA-3 proteins both in EBV-transformed cells and in infected insect cells. EBNA-3A and EBNA-3C were phosphorylated In both cell types. Therefore, if indeed these proteins function as transcriptional transactivators, they may bind to DNA via an indirect mechanism. The recombinant proteins will be Invaluable in the further clarification of the role of EBNA-3A and EBNA-3C in EBV-induced immortalization of B cells.

UR - http://www.scopus.com/inward/record.url?scp=0027967308&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0027967308&partnerID=8YFLogxK

U2 - 10.1006/viro.1994.1675

DO - 10.1006/viro.1994.1675

M3 - Article

C2 - 7975254

AN - SCOPUS:0027967308

VL - 205

SP - 534

EP - 539

JO - Virology

JF - Virology

SN - 0042-6822

IS - 2

M1 - 71675

ER -