BioNetwork bench: Database and software for storage, query, and analysis of gene and protein networks

Oksana Kohutyuk, Fadi Towfic, M. Heather West Greenlee, Vvasant Honavar

Research output: Contribution to journalReview article

1 Citation (Scopus)

Abstract

Gene and protein networks offer a powerful approach for integration of the disparate yet complimentary types of data that result from high-throughput analyses. Although many tools and databases are currently available for accessing such data, they are left unutilized by bench scientists as they generally lack features for effective analysis and integration of both public and private datasets and do not offer an intuitive interface for use by scientists with limited computational expertise. We describe BioNetwork Bench, an open source, user-friendly suite of database and software tools for constructing, querying, and analyzing gene and protein network models. It enables biologists to analyze public as well as private gene expression; interactively query gene expression datasets; integrate data from multiple networks; store and selectively share the data and results. Finally, we describe an application of BioNetwork Bench to the assembly and iterative expansion of a gene network that controls the differentiation of retinal progenitor cells into rod photoreceptors. The tool is available from http://bionetworkbench.sourceforge.net/ Background: The emergence of high-throughput technologies has allowed many biological investigators to collect a great deal of information about the behavior of genes and gene products over time or during a particular disease state. Gene and protein networks offer a powerful approach for integration of the disparate yet complimentary types of data that result from such high-throughput analyses. There are a growing number of public databases, as well as tools for visualization and analysis of networks. However, such databases and tools have yet to be widely utilized by bench scientists, as they generally lack features for effective analysis and integration of both public and private datasets and do not offer an intuitive interface for use by biological scientists with limited computational expertise. Results: We describe BioNetwork Bench, an open source, user-friendly suite of database and software tools for constructing, querying, and analyzing gene and protein network models. BioNetwork Bench currently supports a broad class of gene and protein network models (eg, weighted and un-weighted, undirected graphs, multi-graphs). It enables biologists to analyze public as well as private gene expression, macromolecular interaction and annotation data; interactively query gene expression datasets; integrate data from multiple networks; query multiple networks for interactions of interest; store and selectively share the data as well as results of analyses. BioNetwork Bench is implemented as a plug-in for, and hence is fully interoperable with, Cytoscape, a popular open-source software suite for visualizing macromolecular interaction networks. Finally, we describe an application of BioNetwork Bench to the problem of assembly and iterative expansion of a gene network that controls the differentiation of retinal progenitor cells into rod photoreceptors. Conclusions: BioNetwork Bench provides a suite of open source software for construction, querying, and selective sharing of gene and protein networks. Although initially aimed at a community of biologists interested in retinal development, the tool can be adapted easily to work with other biological systems simply by populating the associated database with the relevant datasets.

Original languageEnglish (US)
Pages (from-to)235-246
Number of pages12
JournalBioinformatics and Biology Insights
Volume6
DOIs
StatePublished - Nov 22 2012

Fingerprint

Gene Regulatory Networks
Software
Genes
Databases
Query
Gene
Proteins
Protein
Gene expression
Gene Expression
Throughput
Network Model
High Throughput
Retinal Rod Photoreceptor Cells
Gene Networks
Open Source Software
Expertise
Software Tools
Open Source
Intuitive

All Science Journal Classification (ASJC) codes

  • Biochemistry
  • Molecular Biology
  • Computer Science Applications
  • Computational Mathematics
  • Applied Mathematics

Cite this

@article{4970c8d4f66c4a89b16da736b39e79f6,
title = "BioNetwork bench: Database and software for storage, query, and analysis of gene and protein networks",
abstract = "Gene and protein networks offer a powerful approach for integration of the disparate yet complimentary types of data that result from high-throughput analyses. Although many tools and databases are currently available for accessing such data, they are left unutilized by bench scientists as they generally lack features for effective analysis and integration of both public and private datasets and do not offer an intuitive interface for use by scientists with limited computational expertise. We describe BioNetwork Bench, an open source, user-friendly suite of database and software tools for constructing, querying, and analyzing gene and protein network models. It enables biologists to analyze public as well as private gene expression; interactively query gene expression datasets; integrate data from multiple networks; store and selectively share the data and results. Finally, we describe an application of BioNetwork Bench to the assembly and iterative expansion of a gene network that controls the differentiation of retinal progenitor cells into rod photoreceptors. The tool is available from http://bionetworkbench.sourceforge.net/ Background: The emergence of high-throughput technologies has allowed many biological investigators to collect a great deal of information about the behavior of genes and gene products over time or during a particular disease state. Gene and protein networks offer a powerful approach for integration of the disparate yet complimentary types of data that result from such high-throughput analyses. There are a growing number of public databases, as well as tools for visualization and analysis of networks. However, such databases and tools have yet to be widely utilized by bench scientists, as they generally lack features for effective analysis and integration of both public and private datasets and do not offer an intuitive interface for use by biological scientists with limited computational expertise. Results: We describe BioNetwork Bench, an open source, user-friendly suite of database and software tools for constructing, querying, and analyzing gene and protein network models. BioNetwork Bench currently supports a broad class of gene and protein network models (eg, weighted and un-weighted, undirected graphs, multi-graphs). It enables biologists to analyze public as well as private gene expression, macromolecular interaction and annotation data; interactively query gene expression datasets; integrate data from multiple networks; query multiple networks for interactions of interest; store and selectively share the data as well as results of analyses. BioNetwork Bench is implemented as a plug-in for, and hence is fully interoperable with, Cytoscape, a popular open-source software suite for visualizing macromolecular interaction networks. Finally, we describe an application of BioNetwork Bench to the problem of assembly and iterative expansion of a gene network that controls the differentiation of retinal progenitor cells into rod photoreceptors. Conclusions: BioNetwork Bench provides a suite of open source software for construction, querying, and selective sharing of gene and protein networks. Although initially aimed at a community of biologists interested in retinal development, the tool can be adapted easily to work with other biological systems simply by populating the associated database with the relevant datasets.",
author = "Oksana Kohutyuk and Fadi Towfic and {Heather West Greenlee}, M. and Vvasant Honavar",
year = "2012",
month = "11",
day = "22",
doi = "10.4137/BBI.S9728",
language = "English (US)",
volume = "6",
pages = "235--246",
journal = "Bioinformatics and Biology Insights",
issn = "1177-9322",
publisher = "Libertas Academica Ltd.",

}

BioNetwork bench : Database and software for storage, query, and analysis of gene and protein networks. / Kohutyuk, Oksana; Towfic, Fadi; Heather West Greenlee, M.; Honavar, Vvasant.

In: Bioinformatics and Biology Insights, Vol. 6, 22.11.2012, p. 235-246.

Research output: Contribution to journalReview article

TY - JOUR

T1 - BioNetwork bench

T2 - Database and software for storage, query, and analysis of gene and protein networks

AU - Kohutyuk, Oksana

AU - Towfic, Fadi

AU - Heather West Greenlee, M.

AU - Honavar, Vvasant

PY - 2012/11/22

Y1 - 2012/11/22

N2 - Gene and protein networks offer a powerful approach for integration of the disparate yet complimentary types of data that result from high-throughput analyses. Although many tools and databases are currently available for accessing such data, they are left unutilized by bench scientists as they generally lack features for effective analysis and integration of both public and private datasets and do not offer an intuitive interface for use by scientists with limited computational expertise. We describe BioNetwork Bench, an open source, user-friendly suite of database and software tools for constructing, querying, and analyzing gene and protein network models. It enables biologists to analyze public as well as private gene expression; interactively query gene expression datasets; integrate data from multiple networks; store and selectively share the data and results. Finally, we describe an application of BioNetwork Bench to the assembly and iterative expansion of a gene network that controls the differentiation of retinal progenitor cells into rod photoreceptors. The tool is available from http://bionetworkbench.sourceforge.net/ Background: The emergence of high-throughput technologies has allowed many biological investigators to collect a great deal of information about the behavior of genes and gene products over time or during a particular disease state. Gene and protein networks offer a powerful approach for integration of the disparate yet complimentary types of data that result from such high-throughput analyses. There are a growing number of public databases, as well as tools for visualization and analysis of networks. However, such databases and tools have yet to be widely utilized by bench scientists, as they generally lack features for effective analysis and integration of both public and private datasets and do not offer an intuitive interface for use by biological scientists with limited computational expertise. Results: We describe BioNetwork Bench, an open source, user-friendly suite of database and software tools for constructing, querying, and analyzing gene and protein network models. BioNetwork Bench currently supports a broad class of gene and protein network models (eg, weighted and un-weighted, undirected graphs, multi-graphs). It enables biologists to analyze public as well as private gene expression, macromolecular interaction and annotation data; interactively query gene expression datasets; integrate data from multiple networks; query multiple networks for interactions of interest; store and selectively share the data as well as results of analyses. BioNetwork Bench is implemented as a plug-in for, and hence is fully interoperable with, Cytoscape, a popular open-source software suite for visualizing macromolecular interaction networks. Finally, we describe an application of BioNetwork Bench to the problem of assembly and iterative expansion of a gene network that controls the differentiation of retinal progenitor cells into rod photoreceptors. Conclusions: BioNetwork Bench provides a suite of open source software for construction, querying, and selective sharing of gene and protein networks. Although initially aimed at a community of biologists interested in retinal development, the tool can be adapted easily to work with other biological systems simply by populating the associated database with the relevant datasets.

AB - Gene and protein networks offer a powerful approach for integration of the disparate yet complimentary types of data that result from high-throughput analyses. Although many tools and databases are currently available for accessing such data, they are left unutilized by bench scientists as they generally lack features for effective analysis and integration of both public and private datasets and do not offer an intuitive interface for use by scientists with limited computational expertise. We describe BioNetwork Bench, an open source, user-friendly suite of database and software tools for constructing, querying, and analyzing gene and protein network models. It enables biologists to analyze public as well as private gene expression; interactively query gene expression datasets; integrate data from multiple networks; store and selectively share the data and results. Finally, we describe an application of BioNetwork Bench to the assembly and iterative expansion of a gene network that controls the differentiation of retinal progenitor cells into rod photoreceptors. The tool is available from http://bionetworkbench.sourceforge.net/ Background: The emergence of high-throughput technologies has allowed many biological investigators to collect a great deal of information about the behavior of genes and gene products over time or during a particular disease state. Gene and protein networks offer a powerful approach for integration of the disparate yet complimentary types of data that result from such high-throughput analyses. There are a growing number of public databases, as well as tools for visualization and analysis of networks. However, such databases and tools have yet to be widely utilized by bench scientists, as they generally lack features for effective analysis and integration of both public and private datasets and do not offer an intuitive interface for use by biological scientists with limited computational expertise. Results: We describe BioNetwork Bench, an open source, user-friendly suite of database and software tools for constructing, querying, and analyzing gene and protein network models. BioNetwork Bench currently supports a broad class of gene and protein network models (eg, weighted and un-weighted, undirected graphs, multi-graphs). It enables biologists to analyze public as well as private gene expression, macromolecular interaction and annotation data; interactively query gene expression datasets; integrate data from multiple networks; query multiple networks for interactions of interest; store and selectively share the data as well as results of analyses. BioNetwork Bench is implemented as a plug-in for, and hence is fully interoperable with, Cytoscape, a popular open-source software suite for visualizing macromolecular interaction networks. Finally, we describe an application of BioNetwork Bench to the problem of assembly and iterative expansion of a gene network that controls the differentiation of retinal progenitor cells into rod photoreceptors. Conclusions: BioNetwork Bench provides a suite of open source software for construction, querying, and selective sharing of gene and protein networks. Although initially aimed at a community of biologists interested in retinal development, the tool can be adapted easily to work with other biological systems simply by populating the associated database with the relevant datasets.

UR - http://www.scopus.com/inward/record.url?scp=84869180864&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84869180864&partnerID=8YFLogxK

U2 - 10.4137/BBI.S9728

DO - 10.4137/BBI.S9728

M3 - Review article

AN - SCOPUS:84869180864

VL - 6

SP - 235

EP - 246

JO - Bioinformatics and Biology Insights

JF - Bioinformatics and Biology Insights

SN - 1177-9322

ER -