BKI1 Regulates Plant Architecture through Coordinated Inhibition of the Brassinosteroid and ERECTA Signaling Pathways in Arabidopsis

Dongxu Wang, Cangjing Yang, Haijiao Wang, Zhihua Wu, Jianjun Jiang, Jingjing Liu, Zhuona He, Fang Chang, Hong Ma, Xuelu Wang

Research output: Contribution to journalArticlepeer-review

6 Scopus citations

Abstract

Hundreds of leucine-rich repeat receptor-like kinases (LRR-RLKs) play indispensable roles in a wide range of plant developmental and physiological processes. The mechanisms controlling LRR-RLKs at a basal and inactive status are essential but rarely studied. BKI1 is the only reported inhibitor of receptor kinases in Arabidopsis, which negatively regulates BRI1 in the brassinosteroid pathway. In this study, we found that BKI1 can also interact with another important LRR-RLK, ERECTA (ER). Phenotypic analysis showed that BKI1 and ER together regulate plant architecture, including pedicel orientation, which is a newly reported phenotype in the BR- and ER-mediated developmental processes. Gene expression analysis revealed that BKI1 regulates a subset of ER-responsive genes. Kinase assays demonstrated that BKI1 inhibits ER kinase activity. In addition, the release of BKI1 inhibition on ER signaling relies largely on BRI1 activation. Our data provide significant insights into the regulation and activation of RLKs and suggest that BKI1 functions as a common suppressor of the BRI1 and ER signaling pathways.

Original languageEnglish (US)
Pages (from-to)297-308
Number of pages12
JournalMolecular plant
Volume10
Issue number2
DOIs
StatePublished - Feb 13 2017

All Science Journal Classification (ASJC) codes

  • Molecular Biology
  • Plant Science

Fingerprint Dive into the research topics of 'BKI1 Regulates Plant Architecture through Coordinated Inhibition of the Brassinosteroid and ERECTA Signaling Pathways in Arabidopsis'. Together they form a unique fingerprint.

Cite this