TY - JOUR
T1 - Bulk-impurity induced noise in large-area epitaxial thin films of topological insulators
AU - Islam, Saurav
AU - Bhattacharyya, Semonti
AU - Kandala, Abhinav
AU - Richardella, Anthony
AU - Samarth, Nitin
AU - Ghosh, Arindam
N1 - Funding Information:
A.G., S.B., and S.I. acknowledge support from DST, India. AR and NS acknowledge support from The Pennsylvania State University Two-Dimensional Crystal Consortium-Materials Innovation Platform (2DCC-MIP), which is supported by NSF cooperative Agreement No. DMR-1539916.
Publisher Copyright:
© 2017 Author(s).
PY - 2017/8/7
Y1 - 2017/8/7
N2 - We report a detailed study on low-frequency 1/f-noise in large-area molecular-beam epitaxy grown thin (∼10 nm) films of topological insulators as a function of temperature, gate voltage, and magnetic field. When the Fermi energy is within the bulk valence band, the temperature dependence reveals a clear signature of generation-recombination noise in the defect states in the bulk band gap. However, when the Fermi energy is tuned to the bulk band gap, the gate voltage dependence of noise shows that the resistance fluctuations in surface transport are caused by correlated mobility-number density fluctuations due to the activated defect states present in the bulk of the topological insulator crystal with a density of Dit=3.2×1017 cm-2 eV-1. In the presence of the magnetic field, noise in these materials follows a parabolic dependence, which is qualitatively similar to mobility and charge-density fluctuation noise in non-degenerately doped trivial semiconductors. Our studies reveal that even in thin films of (Bi,Sb)2Te3 with thickness as low as 10 nm, the internal bulk defects are the dominant source of noise.
AB - We report a detailed study on low-frequency 1/f-noise in large-area molecular-beam epitaxy grown thin (∼10 nm) films of topological insulators as a function of temperature, gate voltage, and magnetic field. When the Fermi energy is within the bulk valence band, the temperature dependence reveals a clear signature of generation-recombination noise in the defect states in the bulk band gap. However, when the Fermi energy is tuned to the bulk band gap, the gate voltage dependence of noise shows that the resistance fluctuations in surface transport are caused by correlated mobility-number density fluctuations due to the activated defect states present in the bulk of the topological insulator crystal with a density of Dit=3.2×1017 cm-2 eV-1. In the presence of the magnetic field, noise in these materials follows a parabolic dependence, which is qualitatively similar to mobility and charge-density fluctuation noise in non-degenerately doped trivial semiconductors. Our studies reveal that even in thin films of (Bi,Sb)2Te3 with thickness as low as 10 nm, the internal bulk defects are the dominant source of noise.
UR - http://www.scopus.com/inward/record.url?scp=85027336696&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85027336696&partnerID=8YFLogxK
U2 - 10.1063/1.4998464
DO - 10.1063/1.4998464
M3 - Article
AN - SCOPUS:85027336696
SN - 0003-6951
VL - 111
JO - Applied Physics Letters
JF - Applied Physics Letters
IS - 6
M1 - 062107
ER -